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In this Review, memristors are examined from the frameworks of both von 
Neumann and neuromorphic computing architectures. For the former, a new 
logic computational process based on the material implication is discussed. It 
consists of several memristors which play roles of combined logic processor 
and memory, called stateful logic circuit. In this circuit configuration, the 
logic process flows primarily along a time dimension, whereas in current von 
Neumann computers it occurs along a spatial dimension. In the stateful logic 
computation scheme, the energy required for the data transfer between the 
logic and memory chips can be saved. The non-volatile memory in this circuit 
also saves the energy required for the data refresh. Neuromorphic (cognitive) 
computing refers to a computing paradigm that mimics the human brain. 
Currently, the neuromorphic or cognitive computing mainly relies on the soft-
ware emulation of several brain functionalities, such as image and voice rec-
ognition utilizing the recently highlighted deep learning algorithm. However, 
the human brain typically consumes ≈10–20 Watts for selected “human-like” 
tasks, which can be currently mimicked by a supercomputer with power 
consumption of several tens of kilo- to megawatts. Therefore, hardware 
implementation of such brain functionality must be eventually sought for 
power-efficient computation. Several fundamental ideas for utilizing the 
memristors and their recent progresses in these regards are reviewed. Finally, 
material and processing issues are dealt with, which is followed by the con-
clusion and outlook of the field. These technical improvements will substan-
tially decrease the energy consumption for futuristic information technology.
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1. Introduction

1.1. The Energy Crisis and Information Technology

The amount of digital data worldwide exceeded that of analog 
data in 1998 due to the explosive growth of personal com-
puters, smartphones and enterprise systems.[1] It is expected 

that the total amount of digital data in 
2040 (only 25 years from now) will be 
≈1028 bytes (1 byte = 8 bits), which is 
approximately one million times greater 
than the current total.[2] A more inter-
esting (and also sobering) expectation is 
that the total number of binary operations 
in 2040 will be ≈1040, which is an astro-
nomically large number.[2] The average 
energy consumption of binary digital 
operations, including logic, memory, and 
input/output operations between logic 
and memory chips, is currently ≈0.1 pico-
joules (≈10–13 Joules). Therefore, if this 
rate of energy consumption per binary 
operation is maintained, the total energy 
expenditure in 2040 for computer opera-
tions will reach ≈1027 Joules, which is far 
higher than the total energy that humans 
will be able to produce at that time. In 
1961, Landauer published a paper on 
the theoretical aspects of computation 
based on digital logic and demonstrated 
that effective computation must be based 
on an irreversible process (otherwise, 
the input and output cannot be distin-
guished), the unit process of which will 
require minimum energy on the order 
of ≈kT (Boltzmann constant × tempera-
ture), which is ≈10–21 Joules at room 

temperature.[3] This estimate means that the aforementioned 
energy consumption in 2040 could be decreased by a factor 
of ≈108, which appears to be quite promising. However, what 
Landauer showed is that this energy is a sort of fundamental 
limit (energy for one thermodynamic degree of freedom) 
without consideration of a detailed method of how binary 
states can be represented by a physical entity and what type 
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circuit always involves thermal noise that can be conveniently 
expressed as a noise voltage of ≈25 mV at room temperature 
(kT/q, where q is the elementary charge). Therefore, any prac-
tical circuit must have a signal voltage at least several times 
higher than this value. For example, dynamic random access 
memory (DRAM) usually has a stored charge of ≈10 femtocou-
lombs (10–14 C), which can induce ≈100 mV of voltage change 
when this storage charge is transferred to a bit line of which 
the capacitance is ≈100 femtofarads (10–14 C/10–13 F = 100 mV). 
10 fC of charge storage/dissipation with an operation voltage 
of 1 V corresponds to 0.01 picojoules (10–14 Joules), which far 
exceeds the Landauer limit. In fact, the input/output of digital 
data between the logic chips (central processing unit (CPU), 
and graphic processing unit (GPU)) and memory (DRAM or 
flash memory) requires approximately 10–100 times more 
energy than does the logic operation itself or the memory of 
the data, as long as the data transfer between the logic and 
memory chips occurs in a form of electrical signal. Recently, 
Sun et al. reported an optical interconnection technology 
that can be applied between two identical chips containing 
both a processor and static random access memory (SRAM) 
using process technologies that are completely compatible 
with current complementary metal oxide semiconductor field 
effect transistors (CMOSFET) to enhance the communica-
tion bandwidth.[4] However, these researchers did not report 
on the possible downsides of such communication method in 
comparison to its electronic counterpart, as the transmitters, 
optical amplification, and internal heating that are required 
to compensate for the resonance deviation might degrade the 
energy efficiency. These discussions indicate that a radical 
change must occur in computer architecture to support the 
feasible growth of information technology (IT). It is notable 
that the famous Moore’s law has survived even though the 
improvement of its recent performance has been delayed, but 
that Dennard’s law, which indicated performance increase 
without increasing power consumption, was halted at a much 
earlier time.

1.2. Strategies to Solve the Problem

Three fundamental approaches can be used to solve this cat-
astrophic energy problem: i) decrease the energy per com-
putation, ii) eliminate the date volatility, and iii) decrease the 
number of computing steps. In fact, decrease in the energy per 
computation has been the approach historically used to develop 
modern computing systems in the form of scaling. However, 
for electric charge-based computation, minimal opportunity 
is available for decreasing the energy per computation due 
to the presence of the aforementioned thermal noise. Other 
physical parameters, such as spins or photons, can be used to 
perform logic operations, which might alleviate the noise issue 
in charge-based computation, but if the final output of the pro-
cessed data exists in charge form, the problem always remains.

The data volatility of memory is definitely another critical 
source of energy consumption. Two typical volatile memories in 
modern computers are SRAM and DRAM. Recently emerging 
magnetic random access memory based on the spin transfer 
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torque effect (STT-RAM) is considered a strong contender as a 
possible replacement for SRAM in the form of cache memory 
because it has a slightly smaller cell size and shows the better 
device performance than SRAM in addition to its inherent 
merit of data non-volatility.[5] Although DRAM represents the 
main memory of modern computers, the fact that it refreshes 
the data 5–10 times per second even if they are not necessarily 
retrieved means that significant energy is wasted to simply 
maintain the data in it.[5] If the main memory can be replaced 
with high-density nonvolatile memory, the possibility of which 
does not appear to be high at the current state, much wasted 
energy could be conserved. Hard disc drive (HDD) has been the 
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main product for the storage memory for a long time, but it 
has been rapidly replaced by NAND flash memory, especially in 
hand-held devices. Memristors have been researched to be used 
as both main and storage memories, but the main focus has 
been put on the storage side. Hwang recently reviewed recent 
progresses in semiconductor memory technology.[5] Nonethe-
less, these are still the topics within the scope of von Neumann 
computing and, therefore, will not be dealt with in detail in this 
review. Data non-volatility has important implications for neu-
romorphic computing, as discussed in the following sections. 
Therefore, it appears that decreasing the computational step 
number is the only feasible option, which is the main theme 
of this review.

1.3. Stateful Logic and Neuromorphic Computing 
for Energy-Saving Computation

Decreasing the number of computing steps is not a straight-
forward task because this goal could be achieved by changing 
the computing paradigm, which means that a well-established 
computing process based on von Neumann architecture must 
be reconsidered partially or completely. An immediate but 
still intermediate solution might be combining the logic and 
memory chips, which fundamentally eliminates the energy 
cost incurred by the data input/output step. Such an approach 
might be duly stated as a “stateful logic” approach.[6] In fact, the 
current logic chips already contain a large number of memory 
functions, such as the flip-flop and latch circuits, in addition 
to the SRAM that enables cache memory. However, the funda-
mental problems of these conventional memory systems are 
that they are all volatile memories, and their cell size is too 
large to be considered high-density memories (the SRAM has a 
cell size of ≈100– 150F2, where F is the minimum feature size), 
whereas DRAM and NAND flash memory have a cell size of 
≈6F2 and ≈5F2, respectively. Recent new memory architectures 
(crossbar or cross-point array) that use multi-layer stacking 
approaches could deliver a cell size < F2. Merging of the CPU 
and DRAM has been attempted for a long time in the semicon-
ductor industry but has not been successful due to the rather 
different processes required for logic transistor fabrication and 
memory cells, especially the notably tall capacitors in DRAMs.[5]

During the operation of a certain computing program with 
a modern computer, which can be described as a (universal) 
Turing machine, all data must be read out and written back 
using the floating-point arithmetic calculation method even if 
these data are not modified. However, the human brain works 
differently and uses ≈20 Watts of power to perform a certain 
computational (intellectual) task, whereas sometimes a super-
computer needs several tens of kilo- to megawatts of power 
consumption for the same task. A direct comparison between 
the energy consumption for the same computational task per-
formed by the human brain and a CMOS logic circuit is quite 
difficult mostly because many of the details of brain function-
ality are not yet clearly understood. It is also anticipated that 
all the computing task will not be performed by human-like 
computer even if it will be successfully developed in the future. 
There will be still areas in which the current deterministic 
computation works better than the human-like computer does. 

Nonetheless, it will be still elucidating to examine the detailed 
computational process for a simple exemplary problem for 
obtaining a better image on how the current von Neumann 
computer works and how inefficient it can be in some cases 
in comparison to the human brain. The exemplary problem is 
to calculate 2 + 3. Of course, a human can calculate its answer 
from the very basic mathematics, and once the answer is mem-
orized in the brain, the person recalls this knowledge when the 
same question is asked. Although the details of the process of 
recall are not precisely known, the specific area of the brain that 
functions for the recall process can be known from experiments 
using ca. the functional magnetic resonance image technique. 
The recall process must involve several spikes of neuronal sig-
nals, where one spike typically takes ≈1 pJ (see Section 3.5), and 
thus, it might be reasonable to assume that the recall process 
will require several tens of pJ. In contrast, the energy used by 
the CMOS logic circuit mentioned above can be accurately cal-
culated because the necessary circuits and their functions are 
precisely known. Interestingly, the conversion of decimal num-
bers 2 and 3 to binary numbers 10 and 11 takes ≈100 logic steps 
each, and the addition itself using a full adder circuit takes only 
≈20 steps. The back conversion of the binary number 101 to the 
decimal number 5 takes 40 steps, and thus, the total logic steps 
needed for 2 + 3 = 5 are ≈260 steps, meaning that ≈26 pJ is 
necessary for the example computation. This value is not much 
different from the approximate assumption for the recall pro-
cess of the brain, suggesting that perhaps each small computa-
tion step itself does not create the million times difference in 
the energy efficiency mentioned above. Therefore, it might be 
conjectured that the critical difference between the brain and a 
CMOS computer is the manner in which each of the logic steps 
is arranged along the space and time dimensions and how 
efficiently each small computation element is allocated. This 
aspect of logic computation is discussed again from a slightly 
different point of view in Section 2 in which the implications of 
“stateful logic” are covered.

Neuromorphic computing or cognitive computing has been 
an active research field in computer science in conjunction 
with the artificial intelligence (AI). Along with the up and down 
turns of the AI research, it also experienced several different 
phases, and still the directions of its research are quite diverse.[7] 
However, it could be discriminated from the current determin-
istic computation from the following aspects. In this review, 
the term “cognitive” is regarded as having a similar meaning 
of “neuromorphic”. It finds an “optimal” rather than “correct” 
solution to a complex problem for which conflicting evidence 
or factors might be present. The process must be adaptive, 
interactive, iterative, stateful, and contextual, and it thus more 
closely resembles the human than current computers. There-
fore, neuromorphic computing has also been used to refer to 
new hardware and/or software that mimic the functioning of 
the human brain. Once the neuromorphic computing system 
is built, it will interact with humans in a much more intimate 
fashion than current computers and will allow users to con-
centrate more efficiently on creative works. Nevertheless, it is 
still unclear how such a new computing paradigm can evolve 
in the real world, although several impressive improvements 
in this field have occurred, including the recent success of the 
“deep learning” algorithm[8] and customized processing units in 
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certain portion of neuromorphic (cognitive) computing is acces-
sible in the near future as of this moment. Nonetheless, this 
approach hardly offers energy efficient computation. Therefore, 
new hardware is necessary. To date, significant improvements 
have been reported on the hardware side, as represented by the 
“True North” neuromorphic chip of the IBM labs[9] and the even 
more recent application processor of Qualcomm (neural pro-
cessing unit: NPU), a portion of which is based on neuromor-
phic architecture.[10]

1.4. Comparison Between the Evolutionary Processes  
of Computer and Human Brain

Another critical aspect that might be learned from nature for 
composing a new computing machine is the ratio between data 
processing elements (neuron) and memory (synapse), although 
the functionality of neuron and synapse in human brain is 
somehow lumped, and, thus cannot be directly compared with 
CPU and memory (DRAM and Flash). Nevertheless, such 
kind of comparison will provide a certain useful insight on the 
futuristic development of general hardware configuration of a 
computer. Figure 1a shows the ratio for different animals along 
the evolutionary stage, where the increase rate of the number 
of neurons is ≈2/3 the power of that of the synapse (blue 
symbol).[11] The reason for this ≈2/3 power relation might also 
be derived from the energy consumption and accompanying 
heat generation in neuronal processes. As the linear dimension 
of the brain increases, the volume of total synapses increases 
according to the cube of the linear dimension because these 
synapses approximately correspond to non-volatile memory and 
do not consume as much active power. However, neurons work 
actively and generate heat, and thus, if they are located deep 
inside the brain, a subset could be thermally damaged. There-
fore, these neurons must be preferably located on the surface 
region of the brain to effectively dissipate the generated heat, 
meaning that the number of neurons might increase according 
to the square of the linear dimension of the brain. This com-
parison can explain the different evolutionary 
rates of neurons and synapses in mammalian 
brains. This is in fact a rash oversimplifica-
tion of evolutional processes of brains, but 
the outer location of cerebral neocortex in 
human brains may provide a certain level of 
justification for such hypothesis, considering 
that the other parts of brain evolved from the 
those of reptiles are located relatively deep 
inside.

Because this is a generic problem related 
to the energy consumption and heating, a 
similar trend could be expected for semicon-
ductor chips if they exist in a three-dimen-
sional structure, i.e., the CPU will still take 
on a planar shape, but the memory will take 
on a stacking structure, especially for the case 
of nonvolatile memory. In contrast, the main 
memory, such as DRAM, might encounter 
difficulty in pursuing such an evolutionary 

route because of the effective heat dissipation problem in addi-
tion to the difficulty of fabrication in a vertical configuration.

Therefore, it is quite notable that the human-made computer 
has also displayed a similar evolution between the data pro-
cessing elements (CPU) and memory (disk density), as shown 
in Figure 1a (red symbol).[12,13] It is still a tricky task to compare 
a computer and brain in this aspect, but the increase rate of 
clock speed of a CPU can be compared with that of the disk 
density, which shows an even faster rate of increase of memory 
density than the brain. In fact, to mitigate such a problem, the 
number of transistors in logic chips has also increased rapidly, 
thus making the overall rate of increase of memory and logic 
functionality more comparable, as shown in Figure 1b, where 
the logic functionality is represented by the CPU clock time × 
transistor numbers.

The CPU clock and transistor number increased concur-
rently while clock speed increase has been leveled down already. 
It might be more reasonable to compare the MOSFET number 
in CPU chip and neuron number in a brain, but this may give 
a wrong impression that the number of transistors in CPU and 
the number of neurons in brain have one-to-one correspond-
ence, which is certainly not the case. The performance or func-
tionality of the two entities are better compared by examining 
the CPU clock and neuron number considering the most likely 
sequential and parallel computing processes, respectively. 
Other comparison could be made, such as the CPU transistor 
number increase vs. DRAM cell density increase (green symbol 
in Figure 1a). In this case, the integration density increase 
rates are much more compatible with each other, which might 
be due to the fact that both chips consume power constantly 
during operation, so that they should be made on planar sur-
face. When the functionalities of DRAM and HDD (or NAND 
flash) are lumped together and compared with synapse in brain, 
the trend of memory and storage density vs. CPU performance 
appears to follow natural evolution of mammalian brain. There-
fore, it can be conjectured that in future computer, no matter 
whether it is with conventional von Neumann or new architec-
tures, the importance of higher memory density over the faster 
CPU will increase.
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Figure 1. a) Ratio of data processing units (neurons) to memory units (synapses) in animals 
plotted with evolutionary stage (blue symbols) and in computer systems (red symbols). DRAM 
cell density increase vs. CPU transistor number increase is represented by green symbol, and 
b) memory capacity as a function of logic functionality is represented by CPU clock × number 
of transistors.



© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (5 of 27) 1600090wileyonlinelibrary.com

R
EV

IEW

As mentioned previously, the memristor is one highly 
appealing contender for ultra-high density memory, especially 
in three-dimensional stacking. For nonvolatile memory, three-
dimensional stacking is highly feasible, and it is indeed the 
case as understood from the mass-production of vertical NAND 
flash memory in 2014.[14]

1.5. The Memristor

The memristor could be a critical ingredient as a stateful logic 
element and artificial neuron/synapse in von Neumann and 
neuromorphic computing paradigms. The memristor was 
suggested by L. Chua in 1971 as the fourth elemental circuit 
component that correlates the flux and charge.[15] However, 
although the memristor was claimed to be experimentally dem-
onstrated in 2008 by the Hewlett-Packard (HP) group, it could 
be more appropriately described as a charge-controlled variable 
nonvolatile resistor, the precise state of which could be further 
modified by the applied voltage.[16] Therefore, an immediate 
application of the memristor might be in the form of the crit-
ical component of resistance switching random access memory 
(ReRAM), according to the suggestion made by the IBM group 
in the 1960s,[18–20] although it has not been highlighted until 
2000, when the IBM Zürich group reported feasible resistance 
switching (RS) properties from a Cr-doped SrZrO3 film.[17] 
Since then, ReRAM has become a focus of both academia and 
industry. Several excellent review articles were published for 
ReRAM using various materials, and therefore, this review does 
not focus on that area. Instead, this paper primarily explores 
new applications of memristors for new energy-efficient com-
puting paradigms.[21–28]

One of the exciting aspects of the memristor is the notably 
high dynamic variance of its properties in response to external 
stimuli, such as voltage or charge, which means that the state 
of a memristor can be drastically changed with a minor change 
in input, making it appear to show chaotic behaviors at times. 
A typical example of such behaviors is its negative differential 
resistance (NDR), which accelerates the response speed up to 
the chaotic level. L. Chua recently stated that biological neu-
rons are ‘poised at the edge of chaos’.[29] This behavior means 
that the resting states of neurons display near-chaotic behaviors 
such that even a minute perturbation, such as thermal fluctua-
tion from the environment, can make the neurons fire with 
apparently chaotic behaviors. It is still unclear how such cha-
otic behavior can be used or what the possible role of such cha-
otic behavior could be in the human brain, but the similarity 
between the near-chaotic state of the neuron and memristor 
could be a significant ingredient for a futuristic cognitive com-
puting machine.

Another critical feature of the memristor is its threshold 
switching (TS) behavior. This TS can be used as a critical com-
ponent to easily build an oscillation circuit that might require 
several tens of MOSFETs if attempted with conventional Si-
based semiconductor devices. The recent demonstration of 
a “neuristor” by the HP labs is a good example of such per-
formance, which is also related to the high dynamics (and 
somehow chaotic behavior) of the memristor.[30] Additional 
details on this device are provided later.

1.6. Other Approaches

There are several other approaches that may offer better 
energy efficiency than the current von Neumann computer. 
Quantum computing is one of the appealing contenders for 
decreasing computing energy consumption because it can 
process multiple data sets simultaneously, which is beneficial 
for deceasing energy per unit computation as well as the total 
number of computing steps. However, this approach still lies 
within the von Neumann framework (at least up to now), and 
physical implementation of the computing principle is still 
rather challenging. Therefore, this topic is not addressed in 
this review, but the entanglement of quantum states within a 
certain unit and simultaneous operation of many bits is quite 
intriguing, especially if compared with brain function. The 
recent announcement of the D-wave 2X quantum computer 
operating at 15 mK represents a highly impressive improve-
ment in this field.[31]

Analog computing, which can also be described as “approxi-
mate” computing, is another appealing contender for an 
energy-efficient next-generation computing machine.[32] In 
fact, the analog computer is much older than the current dig-
ital computer, but it has been obsolete since the digital para-
digm dominated the field as driven by the enormous progress 
of general-purpose microprocessors (CPU) and solid-state 
memory (DRAM and Flash) over the past several decades. As 
processors become more general, the calculation and energy 
efficiencies become worse. Single-core CPU is perhaps the 
worst, and the multi-core CPU, graphic processing unit (GPU), 
field programmable gate array (FPGA) and application specific 
integrated circuit (ASIC) all follow. In a sense, the analog com-
puting processor might represent a type of ASIC device, and 
the fundamental analog computing processor must rely upon 
a physical (or chemical or even biological) function of a certain 
material. For example, the differential equation, which is often 
encountered in many computer simulations, can be alter-
natively solved by an integration equation, and it is well known 
that a charge stored in a capacitor is the time integration of the 
flown-in current. Therefore, measuring the capacitor voltage 
after a certain number of current pulses applied to a capacitor 
can represent an integration function. The memristor, for 
which the physical status can be changed by accumulation of 
electrical stimuli, can therefore act as a fundamental asset for 
an analog computing processor. Various limitations and draw-
backs exist in analog computing compared with digital com-
puting, and one of them is the inability to achieve an arbitrary 
level of calculation accuracy. However, even in digital com-
puting, the precise requirement for the level of accuracy is not 
well known in many cases, and it can be expected that several 
critical areas could exist in which accuracy can be sacrificed. In 
other words, if a certain level of “error” is allowed, the calcu-
lation efficiency must be enormously enhanced. Nevertheless, 
this review does not address this interesting area in detail to 
limit the scope of this paper, but it should be noted that the 
synaptic behavior of the memristor, as presented in Sections 3 
and 4, is essentially an analog-type behavior. The conduct-
ance of a memristor can be nearly continuously increased or 
decreased depending on the amplitude, duration, or number 
of input pulses.
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This review is constructed in the following order. First, the 
lengthy introduction described the motivation to write this 
review which is related with the unsustainable energy con-
sumption along with the abrupt IT evolution. Second part will 
be started with the description on history of the memristor, and 
followed by a short review of the physical implications of the 
memristance. The main purpose of this section is describing 
the possible roles of the memristor within the von Neumann 
architecture. This section includes discussions on stateful 
logic application of the memristor within the scope of the von 
Neumann architecture. Readers are presented with the view-
point that logic information flow along the time dimension, as 
opposed to the logic flow along the spatial dimension, which is 
the configuration of current logic circuits that use CMOSFETs. 
The material implication (IMP) or the fourth logic element, as 
suggested by Whitehead and Russell in 1910[33] and later by 
Claude Shannon in 1937[34] within the form of switch logic, and 
the three logic gates of AND, OR, and NOT at the present time 
are also discussed briefly in terms of their pros and cons. Third, 
the principle, role, and applications of memristors in the neuro-
morphic computing area (which adopts architectures different 
from that of the von Neumann) are addressed in detail. This 
part is composed of several sub-sections that describe generali-
ties of neuromorphic computation based on online and offline 
learning algorithms as well as the neuromorphic system imple-
mentation. This section also discusses the possible usefulness 
of memristors as the artificial synapse, and limitations of them 
as the circuit component in such applications are also dis-
cussed. Possible approaches used to supplement this weakness 
are discussed. Fourth, recent notable improvements in material 
aspects are summarized, including electrodes and fabrication 
methods. More specifically, three-dimensional integration tech-
niques are highlighted because application of these materials 
will require rather highly integrated devices for both von Neu-
mann and newly developing computing architectures. Finally, 
the summary and outlook for this field are provided. Figure 2 
illustrates the hierarchy of the emerging computing methodolo-
gies that are addressed in this review in detail.

2. Von Neumann Logic Application of  
the Memristor

This section is composed of three subsections: a short history 
of memristors, FPGA type implementation, and stateful logic 
using the memristor.

2.1. A Short History of the Memristor

Symmetry is one of the most dominant principles in science 
and was the fundamental motivation underlying the introduc-
tion of the memristor by L. Chua in 1971.[15] At that time, four 
fundamental variables in electrostatic circuits, i.e., current, 
voltage, flux, and charge, and three circuit components (defined 
by the relations of two of the four variables) were known, 
which was formidable in terms of the symmetry among the 

fundamental variables. Additional information was required to 
fill the missing piece of the symmetry that defines the relation 
between the charge and flux, and this element was referred to 
as the memristor by Chua. He also designed the equivalent cir-
cuit of the memristor composed of the existing circuit elements 
and described its theoretical aspects.[15,35] Ironically, this study 
was slightly too pioneering to be widely accepted at that time, 
and thus, it remained obsolete until 2008 (the original paper 
(Ref. [15]) was cited only 22 times over 37 years, but after 2008, 
it was cited over 1,400 times). In 2008, Strukov et al. reported 
that the unique current–voltage (I–V) relation, which is known 
as a resistance switching behavior in TiO2, can be interpreted 
using Chua’s memristor theory.[16] At that time, resistance 
switching related topics had been intensively studied such that 
the material and device technologies had been mostly estab-
lished. Furthermore, the theoretical definition of the memristor 
was expanded as experimental data for the memristor accu-
mulated; any type of material system that shows pinched I–V 
characteristics can be a memristor, meaning that most of the 
ReRAM system or even phase change memory material can be 
considered as a memristor.[36,37] Since the pioneering work by 
Strukov et al., the memristor has been recognized as offering 
high potential for emerging electronics, not only for conven-
tional nonvolatile memory applications but also for new com-
puting paradigms that are currently drawing great attention, as 
shown in this review. Figure 3 displays the search results on 
the number of publications filtered using the specific keywords 
of ReRAM only, memristor including ReRAM, and mem-
ristor excluding ReRAM, which corresponds to the triggered 
area after the memristor was found.[38] This figure shows that 
the number of memristor-related publications continues to 
increase, whereas ReRAM related research is nearly saturated 
and has even begun a downward trend.
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Figure 2. Hierarchy of computing methodologies. In conventional com-
puting, the roles of the CPU and memory are distinguishable in that the 
CPU performs the logic operations and the memory store the data. There-
fore, this process requires I/O elements for communication. In stateful 
logic computing, the device contains both logic operations and data 
storage capabilities. Both computing methodologies can be placed under 
the von Neumann architecture. In neuromorphic/cognitive computing, 
no distinguishable boundary exists between logic and memory, and this 
structure does not rely on von Neumann architecture.
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2.2. FPGA-Type Application

In 1998, Heath et al. proposed the defect-tolerant computer 
architecture.[39] The basic concept of this architecture is config-
uration of the wiring network to allow detour paths that enable 
the system to avoid the defective computing units. This wiring 
network was built on the crossbar structure, and a pair of 
memory and switch units were located at the cross point of the 
crossbar, where the programmable memory unit, composed of 
SRAM, stored the connectivity information and the switch unit 
(which was basically a transistor) received the information from 
the memory and turned the connectivity on or off accordingly. 
This architecture worked well and later resulted in the “Ter-
amac” computer designed by HP labs.[39] This computer is an 
example of a new application FPGA device that has been used 
as a compromise between the CPU and ASIC devices. The gen-
eral FPGA contains blocks and arrays of CMOSFETs for which 
connections can be configured to arbitrary logic circuits using 
the abovementioned pairs of memory and switching units. 
Due to this unique feature, the FPGA chips generally contain 
a much higher proportion of routing devices (a pair of memory 
and switch units) than that of other CMOS logic circuits, partly 
due to the high area consumption of SRAM. Another problem 
is that SRAM is a volatile memory device such that once power 
is turned off, the implemented circuit configuration disappears. 
Therefore, it is highly desirable to replace the SRAM with a cer-
tain type of nonvolatile memory with a much smaller cell size. 
It is also preferable if the memory cells can be placed on top of 
the logic circuit block to further conserve the chip surface area. 
Therefore, the memristor, or more specifically ReRAM, has 
been seriously considered for such an application. Replacement 
of the SRAM on a general FPGA chip with a memristor (which 
could be more appropriately described as a ReRAM in this case) 
does not necessarily correspond to the defect-tolerable architec-
ture mentioned above. However, if the integration density of 

the memory and logic cells in a chip increases to a much higher 
value than that at the current time, it is reasonable to explore 
any type of defect-tolerable architecture because checking the 
functionality of all cells and replacing the defective ones with 
redundant cells is not an economically feasible option.

At nearly the same time, molecular electronics have been 
extensively studied.[40] The molecules sandwiched between 
two electrodes exhibited various types of electronic behaviors, 
i.e., conductor, diode, and even memory (which can also be 
assigned to memristors), such that they were promising alter-
natives for replacement of inorganic materials such as metal, 
oxide, and semiconductor, although various issues related to 
thermal stability and process integration still remain. Because 
the electronic functions of molecules can be achieved with 
a two-terminal structure, the crossbar structure that allows 
higher density and lower cost was the best platform to maxi-
mize the advantages of molecular electronics. The first step 
toward realizing the molecular electronics for this device was 
embedding them into the conventional CMOS technology. To 
this end, one of the most notable studies was that reported by 
Ziegler and Stan in 2003,[41] who proposed various applications 
of the crossbar-based molecular electronics in conjunction with 
CMOS technology as a new device paradigm. Nevertheless, the 
thermally fragile properties of the molecular layer, the precise 
location of the molecules at the specified positions on a large-
scale wafer without adverse effects from other regions (contact), 
and accurate thickness control of the layers still impose signifi-
cant challenges in this field. Therefore, inorganic-based mem-
ristor materials appear to be more promising.

In 2005, Strukov and Likharev merged the existing crossbar-
based molecular electronics technology and the reconfigurable 
wiring network concept of defect-tolerant computing, both 
commonly based on the crossbar structure. Additionally, they 
proposed a new semiconductor-molecule hybrid architecture[42] 
in which they used one of the interesting behaviors shown 
by specific molecules sandwiched by two electrodes known 
as the “latching switch”. This latching switch was actually a 
memristor, although it was not clearly realized at that time. 
Because the latching switch included the functions of memory 
and switching and could be implemented in the crossbar plat-
form, a single cell of this device could directly replace the func-
tions of memory and switching of the reconfigurable wiring 
network, which might result in a large improvement in the 
density (one cross-point can replace seven transistors and the 
extra connections between them). This concept was realized 
by Xia et al. in 2009 and was known as the memristor–CMOS 
hybrid integrated circuits.[43] In this work, Xia and coworkers 
fabricated the CMOS arrays and then integrated the inorganic 
TiO2 memristor crossbar array on top of it in an arrangement 
in which the CMOS arrays and the memristor arrays are con-
nected through vertical vias. The connectivity between the indi-
vidual CMOS circuits for specific logic gates was configured via 
the crossbar memristor by specifically programming the states 
of the memristors located at each cross-point of the crossbar. 
This approach provided a convenient way to personalize the 
logic gates depending on the user purpose, but a portion of the 
CMOSs had to be idle such that the efficiency could not be opti-
mized. Therefore, such an approach is suitable for FPGA-type 
applications rather than CPU-type applications.
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Figure 3. Number of publications filtered by specific keywords: ReRAM 
only (blue area), ReRAM and memristor (red area), and memristor 
excluding ReRAM (gray area). The gray area greatly increases after the 
memristor was claimed to be founded by Strukov et al. in 2008.[16] Data 
collected from Web Of Science, Thomson-Reuters in June 2016.
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2.3.1. A Short History

Modern computational processes are based on the Boolean 
algebra suggested by G. Boole in 1854.[44] In Boolean algebra, 
only two values exist for the variables, 1 or 0 (i.e., true or false). 
Using the relationship between the variables, logic operations 
such as ‘AND’, ‘OR’, and ‘NOT’ are addressed, and have become 
the fundamental base of digital electronics. The machine that 
was realized to perform Boolean algebra is the digital computer; 
the basic principle of digital computer was initiated by Turing 
and Church, and it was further refined by von Neumann with 
random access memory. Binary digital logic was also formu-
lated by Shannon through switching devices. Thereafter, many 
digital logic circuits have been established and now dominate 
the IT era via CMOS logic devices and circuits.

Switching components that can input signals during the 
operation period or otherwise be turned off are necessary for 
practical realization of electronic logic devices, in which the 
digital signals of 1 or 0 can be represented by the presence or 
absence of voltage and corresponding current flow. For early 
computing machines, due to diode’s simple switching charac-
teristic, diodes were used extensively for logic operations, and 
this is referred to as diode logic (DL). However, the disadvan-
tage of this method is quite obvious. Since diode is a unipolar-
type device, combinations of these devices cannot provide all 
logic operations, allowing only AND and OR operations. In 
addition, these components are passive-type devices wherein 
the output signal intensity becomes increasingly weaker as 
the logic sequences progress. This weakness can be comple-
mented by adopting a signal amplifying system in the high-
density array. The circuit configuration adopted to amplify the 
decaying signals with transistors is known as diode transistor 
logic (DTL). By replacing the diode with the bipolar junction 
transistor (BJT), the logic is further enhanced and is called tran-
sistor–transistor logic (TTL); BJT consists of back-to-back con-
nection of two p–n junctions (diodes) that can easily mimic a 
diode. CMOS logic was finally developed to reduce operation 
power, becoming the core technology of modern computers. 
For all cases mentioned, the logic operations are based on 
switch technology.

2.3.2. Material Implication Logic using Memristors

Considering the memristor is a two-terminal switch, it is 
obvious that it can also be utilized as the switching element for 
logic operations. Moreover, owing to the memristor’s memory 
functionality, unlike diode or transistor, the memory func-
tion can be used during the logic operation. This functionality 
has been realized and implemented within the “stateful” logic 
operation by Borghetti et al. in 2010,[6] as mentioned in Sec-
tion 1. The suggestion was based on the material implication 
(IMP) gate, which has been obsolete for a long time as men-
tioned previously. It was also proven that almost all Boolean 
algebras could be achieved by combining several IMP opera-
tions. Various types of materials and operational schemes 
of the memristor can be adopted for IMP logic. As a result, 

stateful logic could have critical implications for digital com-
puters. According to the original concept of a universal Turing 
machine, the conventional computing system requires memory 
as well as a processing unit, and these functions are not neces-
sarily separated. In fact, the modern CPU contains a relatively 
high density (several hundreds of Mb) of embedded memory 
(SRAM), however, it is not sufficient for most of the demanding 
computational tasks. In order to alleviate this issue, DRAM 
plays the role of the main memory and continues to receive/
feed data from and to the CPU during the operation. Still, this 
process invokes performance mismatch between the CPU and 
DRAM, and congestion of data through the input/output (I/O) 
system, requiring additional energy and cost. In memristor-
based stateful logic operation, in principle, the I/O could be sig-
nificantly decreased because data can be stored in the stateful 
logic circuit itself and used directly for the next operation. This 
logic operation can provide a fundamentally new paradigm for 
computer architecture within the von Neumann framework. 
Nonetheless, “stateful” itself invokes several critical problems, 
as discussed later, in addition to the limited functionality of 
IMP for certain tasks. The details of IMP operation and its 
circuit implementation are explained in the original paper by 
Borghetti et al. and a recent monograph by Vourkas and Sirak-
oulis (Chapter 4, Memristor-based logic circuits).[45] The mono-
graph contains an extensive review on memristor-based logic 
circuits, including IMP and CMOS-like circuit implementation 
using complementary resistive switching (CRS) devices, and 
their simulations using the SPICE tool.

2.3.3. Comparison with CMOS Circuits

To explain the advantages and disadvantages of stateful logic 
using memristors compared to the conventional CMOS logic 
devices in terms of calculation efficiency, the circuit implemen-
tation of the NAND gate and full adder (FA) via CMOS devices 
(n- and p-type MOSFETs) are briefly presented. Figure 4a shows 
the schematic circuit diagram of NAND and its truth table 
whereas Figure 4b displays the schematic block diagram of FA. 
The CMOS NAND gate is a typical example used to explain 
conventional logic functionality. When the two inputs (A and 
B) are applied to the gates of the coupled inverters composed 
of four n- and p-type MOSFETs, the output is immediately 
determined according to the truth table. Therefore, this process 
requires only one unit of processing time. A small time delay 
occurs between the inputs and outputs mostly due to the RC 
delay of the circuit. At the same time, this operation requires 
at least four MOSFETs of which the layout can be integrated 
in a ≈40F2 area. In an ideal CMOS NAND circuit, no current 
flow should occur at a given state once the switching operations 
are completed, which is actually not the case owing to the gate 
leakage and source-drain leakage. The output of a NAND gate 
is directly connected to the input of the next gate. A MOSFET is 
an active device, meaning that the input voltage is not directly 
transferred to an output wherein output is always connected to 
either the drive voltage (Vdd) or ground through the channel of 
p-MOSFET or n-MOSFET. Thus, even noisy input is filtered 
at the output, and signal amplification can be achieved. When 
the power is turned off, the logic state is removed immediately. 
These are the critical characteristics of a NAND gate composed 
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of CMOSFETs. Next, how a similar NAND function can be con-
structed using memristor-based stateful logic IMP devices is 
discussed, and the schematic diagram and truth table, which 
are reproduced from Borghetti et al.,[6] are shown in Figure 5a 
and b, respectively. The structure consists of three memristors, 
which are referred to as P, Q and S, and their respective on and 
off states correspond to logic states 1 and 0. According to the 
truth table, p NAND q is equivalent to q IMP (p IMP 0), where 
p, q and 0 can be defined as the logic states of P, Q, and S, 
respectively. In this case, the inputs are applied to P and Q, and 
the output is achieved as the stateful logic state of S after the 
NAND operation composed of three steps is completed. Hence, 
the states of P and Q are defined first by applying the appro-
priate voltages sequentially to P and Q wherein the other mem-
ristors remain floated. The first step of the NAND operation 
is performed by applying a clocking voltage of VS = Vclear to S 
while the P and Q memristors remain floated, turning the S off. 
At the second step, VP = Vcond and VS = Vset are applied to P and 
S while Q is floated; the state of S is changed accordingly to the 
input data of P and it is described by the second truth table in 
Figure 5b. For the third step, VQ = Vcond and VS = Vset are applied 
to Q and S while P is floated, which changes the logic state of 
S again with respect to the input data of Q, and it is described 
by the third truth table in Figure 5b. Finally, the logic state of 
S, corresponding to “s”, is read out using a read voltage. There-
fore, it can be understood that a total of six sequential clocking 
voltage steps (two input steps + three steps of logic operation +  
one read step) are required to execute one NAND operation, 

and this is a critical drawback of such 
method compared to the one-step NAND 
operation in a CMOS-based NAND gate. 
This situation might be understood as fol-
lows: in the CMOS NAND gate, the logic 
operation is accomplished by changing the 
state of the n- and p-MOSFETs located along 
the chip surface, meaning that the logic 
data are transferred along the spatial dimen-
sion. For more complicated circuits such as 
the FA shown in Figure 4b, the same rea-
soning can be applied, i.e., the input data 
are applied at one end of the circuit, and 
the output is achieved at the opposite end 
along the spatial dimension despite taking 
a longer time than the simple NAND case 
due to the longer RC delay. In contrast, 
in the case of a NAND via the IMP mem-

ristor, the state of S changes with time during the operation 
in a three-step manner while the input is applied at the adja-
cent memristors. For this reason, the logic data flow along 
the spatial dimension as well as the time dimension, and the 
time domain has higher significance. To realize FA, memristor 
circuits can be used in several different ways. As shown in 
Figure 4b, the CMOS FA combines circuits of AND and XOR 
gates, each of which can also be constructed using IMP opera-
tions in the form of p AND q = (p IMP (q IMP 0)) IMP 0 =  
(p NAND q) IMP 0, and p XOR q = (p IMP q) IMP ((q IMP 
p) IMP 0), respectively. Although these circuit implementations 
have certain complications, as will be discussed shortly, they 
can be achieved by memristors nonetheless. Examining the 
equivalence of the AND circuit, one extra IMP operation step 
is included between S (the output of p NAND q) and 0. Hence, 
two approaches exist for how the AND is implemented by the 
memristor circuits: one is to use a fourth memristor cell T to 
input 0 (t = 0), corresponding to the spatial arrangement of the 
circuit elements, and the other is to re-use the same memristor 
cell after the first p NAND q operation is completed. In this 
case, the output of the first NAND operation S is stored in a 
separate memory, and S is reconfigured to 0. The data from the 
previous NAND are input to P (or Q) and the subsequent IMP 
operation between P (or Q) and S (of which logic state is now 0) 
results in the final output of AND, which is now stored as the 
logic state of S that must be subsequently read out. As a result, 
this process can be understood as the allocation of logic func-
tionality along the time dimension. For FA implementation, 
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Figure 4. a) Schematic circuit diagrams of NAND and its truth table and b) schematic block 
diagram of full adder (FA).

Figure 5. Memristor-based stateful logic IMP devices. a) Schematic diagram of the device and b) truth table showing the sequential data processing 
results. Reproduced with permission.[6] Copyright 2010, Nature Publishing Group.
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another set of memristors must be available to calculate Carry. 
If the previous set of memristors were used to calculate the 
Sum, it must be re-configured using the same set of memris-
tors. Compared to the purely temporal circuits, perhaps, the 
spatio-temporal combination of the memristors results in a 
more practical implementation of the IMP circuits.

Two main problems exist for spatial IMP circuits. As pre-
viously mentioned, the memristor is a passive two-terminal 
device, and thus the signal decay along the long logic chain 
must be considered, which is not necessarily the case for the 
temporal circuit. Therefore, signal amplification is neces-
sary. Another problem is that the logic state of the output (S 
in the above examples) must be transferred to the next logic 
circuit by different voltage step. One solution to these prob-
lems is to adopt MOSFETs, as shown in Figure 6, where three 
n-MOSFETs are used between the parallel memristors and load 
resistance (RG). For logic operation of the memristor circuit, 
MOSFET 1 is turned on, and MOSFET 2 is turned off such that 
the next stage of the logic circuit is effectively isolated from the 
circuit of interest. Once the logic operation is completed and 
the output is assumed to be transferred to the next stage of the 
circuit, MOSFET 1 is turned off, and MOSFET 2 is turned on. 
With an appropriate read voltage, sufficiently low to not disturb 
the logic state of S at the read step but high enough to turn on 
MOSFET 3, the data of S can be transferred to the next stage 
with appropriate amplification. This situation is related to the 
spatio-temporal arrangement of the memristor circuits, and it 
requires the combination of a CMOS circuit with memristors. 
As discussed in the previous section, the CMOS-memristor 
combined circuit is a feasible contender with FPGA, which is 
also applicable in this case.

Utilizing CMOS circuit would also aid in the cases of the 
XOR mentioned above combined with the EQUAL operations, 
such that CMOS memory can provide the necessary backup 
data when p and q inputs are needed twice in one opera-
tion, which would be invalid without additional data back-up 
sequence.

Another critical difference from the CMOS circuit is that 
the input data can be modified by the IMP operations for the 

NAND operation whereas in the CMOS logic circuits, the 
output has no influence on the inputs. It is unclear whether 
this situation poses a critical drawback at the moment. Never-
theless, the critical merits of such memristor-based logic gates 
are the use of two-terminal devices with limited numbers as 
it can effectively decrease the chip area, and data non-volatility 
lowering power consumption. The memristors can be inte-
grated in a crossbar structure in which one memristor can 
occupy 4F2; accordingly, three memristors can be integrated in 
12F2 which is ≈1/3 size of the CMOS NAND gate. Even taking 
additional transistors into account for signal amplification and 
delivery, the compactness of the area corresponds to the pri-
mary advantage that partially compensates for the disadvan-
tage of complexity in the operational sequence. The effective 
area per device can be further reduced if the crossbar arrays 
are stacked, and this is quite difficult to realize with CMOS 
gate arrays. Likewise, memristor-based stateful logic can be 
reconfigured both spatially and temporally, depending on the 
specific requirements, which will increase efficiency in general 
applications compared to the CMOS logic gate. In standard 
CMOS logic, the number of specific logic gates are predeter-
mined with respect to the optimized design, and thus the logic 
gates assigned for a specific logic operation cannot be used for 
different processes. Also, it will be idle during those periods, 
decreasing the computational and energy efficiency. In that 
case, it is important to determine the appropriate number of 
each logic gate depending on the purpose of the CMOS pro-
cessor. This problem in the CPU can be partly overcome by 
implementing a GPU. Previously, the CPU performed all com-
putational tasks, including graphic data processing mostly com-
posed of specific mathematical formulae and transformations. 
Those graphics-related computations could be more efficiently 
handled in a GPU since it is dedicated to graphics-related pro-
cessing. However, the GPU cannot replace the CPU for other 
purposes. On the contrary, in stateful logic, logic operations 
are performed by a temporal combination of signals, and it is 
possible to perform various operations at any logic gates, in 
principle. This aspect of IMP circuit might be seen as a type 
of an FPGA-type processor, but the new programming of the 
logic gates occurs in the time dimension as well as the spa-
tial dimension. Figure 7a and b displays the conceptual dia-
grams for spatio-temporal assignments of logic gates and their 
operations for stateful logic and CMOS logic gates, respec-
tively. Overall, the higher density associated with the crossbar 
platform in regard to the potentially higher working efficiency 
of stateful logic constitute a good rationale for further inten-
sive research in this field, despite many remaining obstacles 
in the design architecture and material processing areas. It is 
expected that to perform the aforementioned operations in the 
crossbar memristor array, CMOS-based control parts that can 
determine the operation sequences, optimize the operation 
procedure, and address/assign the inputs and outputs appro-
priately are required. Therefore, not only reliable integration 
of the memristor crossbar array but also design of the control 
CMOS circuit are expected to be important components of this 
research. To this end, the recent suggestion of a CMOL con-
figuration in which the memristor array is located on top of 
the back-end portion of CMOS layer is a great advancement for 
this direction.[42]
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Figure 6. An exemplary configuration of the CMOS-stateful logic array 
for delivery of the output signal to the next operation without signal loss. 
This configuration corresponds to spatio-temporal-type data processing. 
Adapted with permission.[6] Copyright 2010, Nature Publishing Group.
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2.3.4. Alternatives

Another type of stateful logic using CRS devices has been sug-
gested by Linn et al., who originally reported CRS ReRAM for 
a sneak-leakage free crossbar array (CBA).[46,47] CBA memory 
based on CRS is gaining less attention at the moment because 
it might be less feasible for achieving sufficiently high inte-
gration density due to the relatively low on-to-off current ratio 
of the reported CRS devices.[48] The CRS-based logic circuit 
is currently gaining interest, however, and the configuration 
is quite CMOS-like, i.e., the parallel (anti-parallel) and serial 
(anti-serial) combinations of the directionality of the memris-
tors composing the CRS are quite reminiscent of the various 
combined configurations of CMOSFETs.[46] The threshold-like 
I–V characteristics of the CRS cell are especially preferable for 
achieving CMOS-like logic functionality. Details for this CMOS-
like implementation of memristor logic circuit can be found in 
the monograph by Vourkas and Sirakoulis.[45] However, these 
CMOS-like circuits (NAND, NOR, and NOT) require separate 
steps for input, logic operation, and reading of the output and 
also need rather complicated drive circuits and switches to dis-
criminate among the different stages of the logic operations, 
which are the critical drawbacks of such an implementation. 
This situation occurs due to the CRS (or memristor) being a 
two-terminal device, but CMOSFETs are three-terminal devices, 
and mimicking the three-terminal device using two-terminal 
devices requires supplemental devices and operational steps in 
the circuitry, which was also the case for the aforementioned 
memristor’s IMP-based logic circuit. Furthermore, the situation 
creates problems related to the spatio-temporal allocation of the 
logic functionalities mentioned above. Nevertheless, interest in 
this field is increasing owing to the critical merits of low power 
consumption and small cell size. One example is the stateful 
logic operation using SiO2-based unipolar memristors that 
Zhou et al. demonstrated,[49] which can be operated by either 
of the bias polarities. It must be mentioned that material relia-
bility issues (which are a large concern for any memristor mate-
rials reported to date) must be addressed, although it is not yet 
clearly understood how high the reliability of the memristor 
needs to be for reasonably operating nonvolatile logic circuits. 
A fundamentally different approach using the exciting func-
tionality of the memristor lies in the exploration of a computing 
paradigm that is completely disparate from the von Neumann 
architecture and is the topic of the subsequent sections.

3. Neuromorphic Computing

This section is composed of five subsec-
tions: definition of neuromorphic com-
puting, machine learning based on software 
implementation, neuromorphic circuit 
architecture, explanation on the advantage 
of neuromorphic system over the conven-
tional von Neumann system, and finally out-
look for memristive neuromorphic systems. 
This topic is viewed from cross-disciplinary 
standpoints, e.g. neuroscience, computer 
science, electrical engineering, and mate-
rials science, such that different approaches 
can be adopted. Generally, a neuromorphic 

system has a hierarchical structure ranging from building 
block (neuron and synapse) that form a small network to large 
network of such small networks. In this case, a building-up 
principle is of great importance, which is strongly related to 
learning and recognition algorithms. Given this hierarchical 
structure, emphasis perhaps differs for different disciplinary 
standpoints. Progress in neuromorphic computing algorithm 
may be justified by means of readily available CMOS compo-
nents (conventional building blocks), which may correspond to 
a top-down approach. This approach offers great efficiency if the 
building blocks are suitable for the algorithms such that they 
do not impose constraints on algorithm realization. Otherwise, 
the algorithm should compromise with the building blocks. 
Alternatively, building blocks can be emphasized which renders 
diverse building blocks available. This may consequently enrich 
neuromorphic computing algorithms, particularly, algorithms 
customized for such new building blocks. In this regard, this 
section mainly overviews recent attempts to seek new building 
blocks for neuromorphic systems and several customized 
learning protocols, which are believed to enrich the neuromor-
phic research field alongside the conventional CMOS-based 
building blocks.

3.1. Definition of Neuromorphic Computing

The first proposal for neuromorphic engineering dates back to 
the late 1980s and originally covered the very-large-scale inte-
gration (VLSI) implementation of silicon-based analog circuits 
that function as the building blocks of a spiking neural network 
(SNN) and conduct recognition tasks on the network scale.[50,51] 
Nowadays, the scope of neuromorphic engineering has been 
widened to encompass hybrid analog/digital circuits and even 
fully digital circuits such as FPGAs,[52–54] which enable recogni-
tion tasks. Neuromorphic computing implies computation for 
recognition tasks achieved by neuromorphic systems that are 
distinctive from the conventional von Neumann computing 
architecture. Recognition in this context usually means pattern 
recognition. The data subject to recognition can be classified as 
several groups (patterns) according to correlations among each 
datum in one set of data for a specific recognition. Furthermore, 
the classified data can have semantic labels as a consequence of 
supervised learning. Handwritten digit recognition is a typical 
example of pattern recognition; humans are able to recognize 
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tial correlations among the digits in the same group that have 
unconsciously been learned. The details of unprocessed raw 
images have relatively low significance in recognition. Neuro-
morphic computing thus aims at realizing such a recognition 
capability using neuromorphic circuits that are highly inspired 
by human brain’s activities. Visual object recognition is one 
main subject that a number of neuromorphic engineers have 
attempted to implement using neuromorphic circuits, and 
thus, has been relatively well developed, particularly its front-
end transducer, i.e., silicon retinas.[50,55,56]

Neuromorphic systems should differ in learning algorithm 
and circuit for different recognition tasks: handwritten digit (and 
still cut), moving visual object, and natural language recogni-
tions. The first task, such as handwritten digit recognition, deals 
with time-invariant (static) input data, so that working memory 
is unnecessarily involved in the system. By contrast, the other 
two tasks need to encode time-variant objects in time domains, 
which may need working memory. Additionally, essential to 
neuromorphic system design is the learning scheme: either 
online or offline learning. The former generally means real time 
learning, whereas the latter distinguishes learning and recogni-
tion phases. Neuromorphic engineering attempts to offer solu-
tions to diverse recognition tasks and eventually a universal 
solution as a platform engine applicable to various tasks.

3.2. Software-Based Machine Learning

For the moment, it is worth introducing software-based 
approaches to recognition tasks within the conventional von 
Neumann architecture in attempt to address the current status 
(including pros and cons) of (hardware-based) neuromor-
phic computing in comparison with its software counterpart. 
Deep learning is a type of a machine learning based on a vir-
tual deep neural network (DNN) encompassing hidden layers 

between the input and output layers.[57,58] Figure 8a illustrates 
a schematic diagram of a DNN with a few layers. In this dia-
gram, neurons are wired to other neurons. The input informa-
tion is highly abstracted through several layers until a decision 
is eventually made in the output layer. Figure 8b illustrates the 
unidirectional signal transmission from a presynaptic to a post-
synaptic neuron.

Deep learning is a fully software-based technology within 
the von Neumann framework and is thus distinguishable from 
the hardware-based neuromorphic systems. The DNN works 
as a universal mathematical hypothesis that is able to classify 
multidimensional input data as proper groups given their cor-
relations.[8] The hidden layers offer nonlinear classification 
boundaries, rendering the DNN universal.[8] The DNN gener-
ally consists of binary neuron and analog synapse; the former 
makes a decision on its output, either ‘1’ or ‘0’, and the latter 
defines weight for the connection between neurons. The most 
commonly used type of neuron in DNN is a sigmoid neuron 
that is described by a sigmoid function. This construction out-
puts ‘1’ if the sum of inputs exceeds zero to a certain extent 
and ‘0’ if the sum falls below zero (also to a certain extent). The 
DNN includes several subsets that are distinguished according 
to architecture or learning algorithm, such as the multilayer 
perceptron network,[59] convolutional neural network,[60,61] and 
deep belief network.[58,62]

Learning (training) in deep learning adjusts the weight 
(model parameters) for classification. Deep learning depends 
on a fully mathematical learning algorithm, e.g., the backpropa-
gation algorithm[57,60,63] and energy-based model.[64] The back-
propagation is an error correction algorithm that is most widely 
deployed in various recognition problems. This algorithm mini-
mizes the difference between the expected (desired) and actual 
output values. The weight update sequence (from the output 
to the input layer) is opposite to the information transmission 
through feedforward connection such that this algorithm is 
referred to as backpropagation.[65]
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Figure 8. a) Schematic diagram of a neuronal network with a few layers. b) Unidirectional synaptic transmission from a presynaptic to a postsynaptic 
neuron. c) Artificial synaptic device including IP block and synaptic weight memory block used in the crossbar structure.
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Deep learning requires a substantial amount of computer 
resources. The requirement becomes more severe as the DNN 
includes more neurons and synapses, which substantially 
increase the runtime. A solution to this computational inef-
ficiency is to reinforce parallel computation using GPUs. A 
GPU contains thousands of cores designed originally to pro-
cess graphics data in parallel, and thus it is compatible with, 
particularly, convolutional neural network.[66] GPUs customized 
for deep learning have already been commercialized.[8] Nonethe-
less, it should be noted that the improvement in computational 
efficiency minimally reduces the power consumption, and the 
energy efficiency of the GPU tends to decline with performance.

3.3. Neuromorphic Circuit Architecture

Neuromorphic computation produces neuronal processing that 
endows the electronic replica (SNN) with recognition capability 
as a consequence of training with a given experience. Analo-
gous to the software-based DNN, the SNN provides a universal 
mathematical hypothesis that classifies multidimensional input 
data as groups. However, a significant difference lies in the fact 
that the SNN conducts analog computing (rather than digital 
computing as for deep learning) that is fully supported by 
physical phenomena. Therefore, the runtime barely scales with 
the network size, so that the SNN most likely outperforms the 
DNN when dealing with large networks.

As such, the SNN consists of spiking neurons and synapses. 
The spiking neuron produces a spike train or burst that is 
equivalent to a bit stream (e.g., 000010010101…) given the all-or-
nothing property of a spike, i.e., ‘1’ when spiking and ‘0’ other-
wise. Such spike firing occurs only if the summed input exceeds 
the threshold for firing, whereas the neuron is silent otherwise. 
The spiking neuron is analogous to the binary neuron in the 
DNN with regard to the threshold output behavior.

The DNN allows unidirectional signal flow through a single 
synapse, and the same holds for the SNN. This unidirectional 
signal transmission reflects the nature of a chemical synapse 
and is distinguishable from an electrical synapse that allows 
bidirectional signal flow.[67] The unidirectional information 
transmission in biological system is attributed to the asym-
metry of the chemical synapse in which neurotransmitters 
are released from the presynaptic neuron (exocytosis) and are 
received by receptors only on the postsynaptic neuron. Similar 
to the synapse in the DNN, that in the SNN has a weight value 
(synaptic weight) to remember. The synaptic weight determines 
the excitatory postsynaptic current (EPSC); the higher the 
weight, the more probability that the spiking of the presynaptic 
neuron evokes postsynaptic spiking.

To implement a learning protocol in a neuromorphic system, 
the artificial synaptic device or circuit should include at least two 
components, as illustrated by the block diagram in Figure 8c. 
The induction protocol (IP) block outputs a signal to the syn-
aptic weight memory block (indicated using w in Figure 8c),  
depending on the presynaptic and postsynaptic spiking condi-
tions. A silicon VLSI synaptic circuit frequently uses an analog 
circuit in the IP block to evaluate an appropriate change in syn-
aptic weight under the given spiking conditions, and the result 
is stored in a capacitor (thus, w is an array of capacitors in this 

case). The IP circuit design varies depending on the imple-
mented learning protocol. A significant challenge from a mate-
rials standpoint is achievement of these two separate functional 
blocks in a single two-terminal synaptic device that is capable 
of synaptic weight evaluation and long-term memorization. To 
this end, the IP block realized by an analog circuit in a silicon 
synapse must be hosted in a two-terminal synaptic device at the 
atomic scale (the crossbar structure in Figure 8c).

The SNN needs hidden layers to represent nonlinear classi-
fication boundaries as for the DNN. The basic structure of the 
SNN is analogous to the DNN (Figure 8a and b). In the SNN, 
each wire in Figure 8b denotes a lumped axon and synapse. 
Note that the intra-layer wiring between neurons must also be 
implemented to form a recurrent network.[68] A winner-take-all 
network with full inhibitory neurons wired to each other is an 
example of a recurrent network.[68]

The following sub-sections (3.3.1–3.3.4) separately deal with 
the artificial spiking neuron (3.3.1), SNN-compatible learning 
algorithm in offline format (3.3.2), SNN-compatible learning 
algorithm in online format with an emphasis on artificial synapse 
(3.3.3), and network design (3.3.4) in a neuromorphic system.

3.3.1. Artificial Spiking Neuron

Within the framework of SNN, the external input is encoded into 
a train or burst of spikes, and the spikes propagate to the topmost 
layer (i.e., the output layer) through hidden layers in between. 
Neuronal ensembles (population) dynamically represent their 
states via spiking dynamics, which are referred to as attractor net-
works.[69] Thus, implementing the “appropriate” spiking neurons 
is of significant importance in the SNN-based neuromorphic 
system. The spiking neuron must meet the following require-
ments: i) integrate-and-fire (I&F) behavior, ii) low power con-
sumption, iii) low spiking rate, and iv) active operation.

The I&F behavior is a prototypical framework of artifi-
cial spiking neuron design and denotes input signal integra-
tion until the integrated level (membrane potential) reaches 
a threshold for spiking and consequent spiking when the 
threshold is reached.[69] Both the input and output of the I&F 
neuron consist of a train/burst of spikes that is equivalent to 
a bit stream (e.g., 000010010101…). Because spiking occurs in 
the time domain, each bit in the bit stream represents spiking-
or-nothing within a given time bin. The length of the bit 
stream, therefore, corresponds to the input or output time, and 
the number of ‘1’s divided by the bit stream length is equal to 
the firing rate or neuronal activity that is primarily taken as the 
input or output quantity in the framework of leaky I&F (LIF).

The integrator in the I&F neuron counts the number of ‘1’s 
and compares it with a threshold value in an attempt to spike 
when the threshold is exceeded. The interval between neigh-
boring ‘1’s is referred to as the inter-spike interval (ISI). The 
LIF is a neuron design framework with higher fidelity to the 
biological neuron.[68–70] As the name implies, the integrator is 
leaky such that the integrated level at a given moment decays 
with time with no incoming spike in close succession. This LIF 
behavior realizes a dynamic (time-dependent) integration pro-
cedure. Therefore, the absolute number of ‘1’s rather than the 
firing rate (i.e., how many ‘1’s per unit time) is a meaningful 
variable in this case.
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phic engineers, so that the artificial spiking neurons must con-
sume as little power as possible. To accomplish this goal, one 
of the popular strategies for CMOS-based spiking neurons is to 
maintain operation of MOSFETs in the subthreshold regime, 
which markedly reduces power consumption compared with 
above-threshold operation.[71–73] However, this strategy reduces 
operational fidelity due to the involvement of inherent random 
noise, e.g., white noise such as thermal and shot noises and non-
white noise such as flicker and burst noises.[71,72] Nevertheless, 
such noise effects perhaps offer the possibility of stochastic com-
puting if the correlation between the noises is not established.[71,74]

Additionally, because each spike generation requires a cer-
tain power, the lower neuronal activity consumes less power. 
Thus, the optimal design of a spiking neuron might include 
limiting the maximum neuronal activity below approximately 
100 Hz (comparable to the biological neuron), particularly if 
the neuromorphic system is aimed at real-time interaction with 
physical environments. However, this design strategy faces 
a severe obstacle in scale-down of the size of a neuronal cir-
cuit. The leaky integrator of an LIF neuron is commonly based 
on a capacitor-based low-pass filter whose cutoff frequency is 
determined by the RC time constant.[75,127] To integrate incident 
spikes at a given neuronal activity (<100 Hz), the cutoff fre-
quency should be less than the neuronal activity, and thus the 
time constant must be remarkably large. This situation accord-
ingly requires large capacitor area, which seriously hinders 
scale-down of the neuronal circuit. A workaround for this issue 
may be to replace the capacitance-based integrator by a floating 
gate integrator as proposed by Kornijcuk et al.[72]

Moreover, a spiking neuron should essentially be active. The 
biological neuron is capable of active operations due to pumps 
for sodium and potassium ions[76] that are embedded in the 
bilipid membrane. The ion pumps consume chemical energy 
to store electrical energy, i.e., voltage, across the membrane in 
the resting state, meaning that the neuron has a power reser-
voir.[67] The same situation should apply for its electronic rep-
lica, otherwise spikes generated at a neuron cannot propagate 
through successive postsynaptic neurons due to signal dissipa-
tion. Therefore, the use of active devices such as MOSFETs is 
perhaps unavoidable, which is a quite similar circumstance to 
the circuit design for the stateful logic discussed in Figure 6.

Although a simple two-terminal passive device such as the 
memristor cannot serve as an entire replacement for a CMOS 
neuronal circuit, such a simple device can be used in a neu-
ronal circuit in an attempt to alleviate the large area overhead of 
the fully CMOS-based neuronal circuit. To date, a few attempts 
have been made to achieve this objective.[30,77,80] Essentially, the 
two-terminal device based on functional materials should not 
represent the memory effect because a neuronal operation is 
minimally dependent on history. Additionally, the two-terminal 
device should possess two distinctive (resistance) states, and the 
state should oscillate between them when excited. This oscilla-
tion behavior is converted to oscillation of the output voltage, 
which resembles spiking behavior. The oscillation frequency 
must vary upon an input signal to make use of neuronal activity 
as a state variable.

A potential approach is based on the relaxation oscilla-
tion achievable via the Pearson-Anson effect.[30,74,77,80] A key 

component of this effect is a threshold switch that represents 
monostable resistive switching accompanied by the S-shape 
NDR effect.[30,74,78,79] Threshold switching behavior has 
been observed in a wide range of materials systems, such as 
higher chalcogenides,[80–82] Mott insulators,[30,79] and Shockley 
diodes.[83] Recently, Pickett et al. proposed an LIF neuron 
model using a pair of Pearson-Anson oscillators referred to as 
a “neuristor.”[30] Each oscillator includes an NbO2-based Mott 
insulator sandwiched between inert Pt electrodes that exhibits 
threshold switching with respect to an applied voltage, which 
in turn leads to a change in lattice temperature crossing the 
critical temperature. The dynamics of the neuristor-based LIF 
(NLIF) neuron model are detailed in a phase-plane analysis by 
Lim et al.[78] The two constant voltage (pull-up voltage) sources 
in the NLIF neuron circuit are capable of active operation given 
the output voltage gain arising from the voltage sources. How-
ever, this scheme uses a threshold switch directly as a pull-up 
resistor, and the pull-up voltage must be close to the threshold 
for the S-shaped NDR to enlarge the voltage gain. Conse-
quently, the pull-up voltage is most likely to cause significant 
reliability issues.[78]

Another approach was proposed by Krzysteczko et al. in 
which the instability of the magnetic configuration in a mag-
netic tunnel junction (MTJ) was exploited.[84] The oscillation of 
resistance through the MTJ was viewed as similar to neuronal 
spiking behavior. The oscillation in the MTJ is estimated to orig-
inate from the thermodynamic instability of the intermediate 
magnetic configuration mediated by the magnetic domain 
configuration in the free electrode.[84] However, the results 
remained at rather primitive level yet, and no proof-of-concept 
circuit was proposed to meet the aforementioned requirements 
for artificial spiking neurons.

3.3.2. Learning Algorithm with Memristor-Based Synapse  
(Offline Learning)

An emerging approach to neuromorphic engineering is to 
make use of a passive synapse array[85,86] as a replacement for 
silicon synapses each of which generally requires dozens of 
MOSFETs.[73,87] Each synaptic device in the synapse array is a 
passive two-terminal device that meets the design rule of 4F2 
such that the passive synapse array has a remarkable advantage 
over mainstream silicon synapses in terms of synapse density 
(areal compactness). As such, each synaptic device has a syn-
aptic weight to remember (memory) to control the excitatory 
current into the postsynaptic neuron circuit (i.e., EPSC). In this 
case, conductance or resistance is perhaps the suitable physical 
quantity for the synaptic weight, and therefore, resistance-
based nonvolatile memory bits (e.g., memristor, phase-change 
memory, magnetic memory) are potential candidates. Likewise, 
these passive synaptic devices are highly scalable down to a few 
tens of nanometers in diameter, thus maximizing the areal den-
sity of synaptic devices (see Section 4). However, it should be 
conceded that this emerging approach is not as mature as the 
former mainstream in silico technologies at present time.

The simplest way to strengthen the above-mentioned advan-
tage of memristors as synaptic devices is to replace the IP 
block in Figure 8c by external digital computing, which is often 
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termed as offline learning. Offline learning refers to training 
a machine in a learning phase that is separate from a real-
time decision-making phase, so that the machine is unable to 
learn in real time. An advantage of such offline configuration 
is that the proper synaptic weight values can be predetermined 
through the learning phase by deep learning algorithms such 
as the backpropagation algorithm,[88,89] and an energy-based 
model for the Restricted Boltzmann Machine.[90] Therefore, the 
IP block is simply replaced by digital calculation, which remark-
ably mitigates the circuit area overhead. In this regard, the 
memristor-array merely works as a look-up table that remem-
bers a synaptic weight value for each synaptic connection. The 
conductance of each memristor in the array is adjusted to the 
preset value. Essential to this end is the analog-like represen-
tation of memristor conductance, good memory retention, and 
minimal crosstalk between passive cells.

3.3.3. Learning Algorithm with Memristor-Based Synapse 
(Online Learning)

A learning (training) process corresponds to adjusting the syn-
aptic weight values in a neural network to classify similar input 
patterns that share essential features with the training datasets. 
In contrast to offline learning, online learning does not endow 
the learning machine with a separate learning phase; instead, 
learning occurs in real-time, interacting with the physical 
environment. A neuromorphic system as a standalone learning 
machine essentially needs the IP block (Figure 8c) and the 
learning principle achieved by the IP block. Frequently, neu-
romorphic engineers benchmark the Hebbian learning rule 
proposed by D. Hebb in 1949.[91] The Hebbian learning rule 
generally covers two protocols: activity-dependent plasticity 
(ADP) and spike timing-dependent plasticity (STDP).[92–98]

ADP means the change in synaptic weight with presynaptic 
and postsynaptic activities, i.e., firing rate. The induced change 
is maintained for a long duration, representing a long-term 
memory (LTM) effect. LTM represents long-term potentiation 
(LTP) and long-term depression (LTD), denoting an increase 
and decrease in synaptic weight under a particular circum-
stance, respectively. ADP is empirically described by the BCM 
rule (proposed by Bienenstock, Cooper, and Munro) that adopts 
a moving threshold for LTP to prevent unlimited growth of the 
synaptic weight.[92] ADP captures the Hebb’s seminal hypoth-
esis of “neurons that fire together wire together,” implying 
that simultaneous spiking of neurons connected by a synapse 
causes an increase in the synaptic weight.[91]

STDP is another seminal learning protocol that relates tem-
poral coding with respect to the relative timing between the 
presynaptic spike’s arrival at the chemical synapse and post-
synaptic spiking.[97–101] The presynaptic spike’s arrival that pre-
cedes postsynaptic spiking leads to LTP, and the reverse time 
order leads to LTD. In neurophysiology, the implication of 
STDP is not clear at the neural network scale other than its role 
in reducing spike-firing latency[97] and short synaptic chain for-
mation.[102,103] Phenomenologically, STDP bifurcates synaptic 
weight depending on causality; the synapse directly causing 
postsynaptic spiking is reinforced (potentiated), whereas others 
are ruled out (depressed). In fact, ADP and STDP appear to 

share the same universal feature of learning but are viewed 
from different viewpoints in different input domains, i.e., in 
the activity and spike timing domains, respectively.[95,96,104]

Employing the Hebbian learning rule, the neuromorphic 
system may be capable of real-time learning (online learning) 
without external digital programming. The Hebbian learning 
rules are customized to these two-terminal synaptic devices 
with abstraction and/or reinterpretation.[52,105] Particularly, 
STDP in abstracted and/or modified form is a widely adopted 
learning protocol. This section covers three approaches to 
memristor-based synapse realization within the framework of 
the Hebbian learning: i) memristor plus a CMOS IP block,  
ii) memristor subject to temporal overlap between presynaptic 
and postsynaptic spikes, and iii) memristor engineered on the 
atomic scale to learn without the temporal overlap.

A general strategy for artificial synapse adopts a mathemat-
ical formula for a learning rule using dozens of MOSFETs.[73,87] 
The evaluated synaptic weight under a given circumstance is 
stored in storage devices such as a capacitor[73,106,107] or floating-
gate transistor.[87] For instance, a stored voltage across the 
capacitor, i.e., synaptic weight, is designed to gate a MOSFET 
that drives an EPSC through the channel towards a postsyn-
aptic neuron circuit.[107,108] Implementing the synaptic weight 
in terms of a voltage across a capacitor simplifies the silicon 
synapse circuit design. However, the charge on the capacitor 
spontaneously decays in due course given the presence of finite 
gate leakage and off-state source-drain leakage of MOSFETs, 
and thus, long-term memory is not achieved solely by the 
capacitor.[73] Memristor is an alternative to these mainstream 
memory elements, which merely works as components of the 
w block in Figure 8c, as shown by Kornijcuk et al.[109] A main 
advantage of this strategy is such that well established learning 
protocols within the framework of CMOS-based neuromorphic 
engineering can readily be used given the separated IP block. 
Nonetheless, this case imposes substantial area overhead on 
the IP block shown in Figure 8c.

A similar approach was applied to phase-change memory.[110] 
STDP was successfully achieved without direct overlap between 
presynaptic and postsynaptic spikes with the aid of the axon 
driver based on CMOS. Instead, the preset voltage pulse pro-
duced by the axon driver overlaps with the postsynaptic spike in 
time such that the desired conductance state is programmed in 
the phase-change memory.[110]

The memristor encodes the height and duration of an 
applied voltage pulse into the consequent resistance state. The 
memristive synaptic device is popularly subject to presynaptic 
and postsynaptic spikes applied to the two different electrodes. 
Given the aforementioned unique characteristics of the mem-
ristor, a commonly used method for STDP implementation 
is to vary the voltage across the memristor depending on the 
spike timing. In this framework, the overlap in time between 
the presynaptic and postsynaptic spikes is essential to drive the 
resistance change. To this end, the spike shape must be engi-
neered carefully such that the overlap of the spikes leads to the 
desired effective programming pulse duration and/or ampli-
tude with spike timing. This approach requires the CMOS neu-
rons to provide a spike of the desired shape. The shape of a 
spike must be customized to different memristive systems of 
different switching polarities and switching voltages.
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Figure 9 shows the STDP behavior in a cation-based mem-
ristive synaptic device, which was measured by applying the 
spike-overlap scheme.[85] This Ag-based memristive synaptic 
device represents a resistance state that varies for different 
programming voltage pulse widths for both set (LTP) and reset 
(LTD) processes.[15,85] In this experimental design, each spike 
consisted of a square voltage pulse with a height between Vth/2 
and Vth, where Vth denotes the threshold voltage for resistance 
change. Therefore, a single spike was unable to induce a resist-
ance change. The presynaptic and postsynaptic spiking patterns 
used in these experiments are displayed in Figure 9c and d. 
The overlap between the presynaptic and postsynaptic spikes 
endows the device with a voltage above the threshold, leading 
to a resistance change. A mixed analog-digital circuit working 
as the IP block generated a potentiating/depressing pulse 
across the memristor synapse when the presynaptic neuron 
spiked before/after the postsynaptic neuron. The feasibility of 
ADP behavior has been identified also in memristive synaptic 
devices in an attempt to describe learning process with respect 
to neuronal activity. The basic scheme for ADP implementation 
is akin to that for STDP, i.e., overlap between presynaptic and 
postsynaptic spikes that are particularly designed. Li et al.[94,111] 

and He et al.[95,112] recently demonstrated ADP in Ag/AgInSbTe/
Ag and Pt/FeOx/Pt, respectively, using this scheme. Such spike-
overlap strategies have been employed in various memristive 
systems which include cation-based systems,[85,113] anion-based 
systems,[114–117] phase-change materials,[118,119] MTJs,[84,120] and 
ferroelectrics.[121] Various candidates for synaptic materials have 
been reviewed in recent review papers.[67,122,123]

However, such STDP induction protocols based on spike 
overlap are not completely aligned with the principles of neu-
romorphic engineering, particularly with respect to the require-
ment for sparsity of spikes, i.e., presynaptic spikes seldom 
overlap with postsynaptic spikes in time. At a low neuronal 
activity comparable to that of the biological neuron, the prob-
ability of spike overlap is notably low, and thus, the learning 
appears quite inefficient. This limitation on learning protocol 
is inherently attributed to the fact that the memristor’s resist-
ance is primarily determined by the internal state variable 
(conduction channel size). In some case, the size of channel is 
solely controlled by an applied voltage. This type of memristor is 
referred to as a first-order memristor.[59] Assuming good reten-
tion of the programmed resistance states, a state change occurs 
only if a voltage (>Vset or Vreset) is applied to the memristor. This 
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Figure 9. a) Schematic illustration of the concept of using memristors as synapses between neurons. b) Demonstration of STDP in the memristive 
synaptic device. The measured change of the synaptic weight (device conductance) vs. the relative timing of pre- and postsynaptic spiking. Examples of 
pre- and postsynaptic spiking patterns (interpreted) for c) LTP and d) LTD are shown. The overlap between potential at the pre- and post-terminals (indi-
cated with a gray zone) exceeds the threshold for a resistance change and consequently induces resistance change. The spiking timing was interpreted 
as LTP- and LTD-evoking voltage pulse widths in this experimental design. Reproduced with permission.[137] Copyright 2010, American Chemical Society.
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observation underlies the spike-overlap scheme for the previ-
ously mentioned learning protocols. An alternative to this fairly 
limited scheme is perhaps to involve an auxiliary variable, i.e., 
the indirect cause of a state change but a long-lasting physical 
parameter between spikes in close succession. Consequently, 
even non-overlapping presynaptic and postsynaptic spikes 
might result in a state change via the interaction between the 
long-lasting auxiliary variable and spike. This type of mem-
ristor that involves an auxiliary state variable is referred to as a 
second-order memristor.[115,116]

Recently, the experimental demonstration of second-order 
memristor was reported in TaOx-[115] and WOx-[116] based mem-
ristors, which was captured by the STDP behavior induced by a 
non-overlapping pair of presynaptic and postsynaptic spikes, as 
shown in Figure 10. The second-order memristive effect in the 
TaOx-based memristor is believed to be caused by the auxiliary 
variable (lattice temperature), the dynamics of which are respon-
sible for the relatively long-term effect that fills the gap between 
non-overlapping successive incident spikes.[115] Joule heating is 
the direct cause of an increase in lattice temperature during the 
auxiliary voltage application, and the temperature decays when 
the voltage terminates. Fortunately, the decay rate is sufficiently 
low to induce a remanent effect on the conducting channel size 
within a spike timing range of a few microseconds.[115] A similar 
second-order memristive effect is also observed in a WOx-based 
memristor.[116] The oxygen vacancy mobility is believed to be an 
auxiliary variable responsible for the remanent effect.[116] Given 

this second-order memristive effect, a wide range of synaptic 
plasticity behaviors, including pair-pulse facilitation, STDP, 
and ADP, were successfully demonstrated using simple non-
overlapping spikes. These results offer probable compatibility 
of memristive synaptic devices with sparsely spiking artificial 
neurons, although the available activity range is still fairly high. 
In addition, the addition of voltage pulses with a lower ampli-
tude (auxiliary variable) between the voltage spikes is not very 
compatible with the biological system, but it can be realized in 
artificial neuronal system with the help of periphery circuits.

3.3.4. Network Architecture for an Efficient Artificial System

Each neuron in a network is wired to a number of other neu-
rons through axons such that the neuron device requires the 
same number of wires. An efficient method for direct wiring 
of neurons was proposed by Likharev et al. and is referred to as 
CMOL (See Section 2.1, discussions related to molecular elec-
tronics).[124] However, the use of simple two-terminal synaptic 
devices is required for the practical application of this network 
design technology. A sensible alternative for rather complex 
neuronal and synaptic circuits is to route a signal (spike) from 
a presynaptic neuron circuit (with its own address) to a target 
postsynaptic neuron circuit (also with its own address) using 
a digital communication protocol. This protocol is known as 
address-event representation (AER).[125,126] In this protocol, the 
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Figure 10. a) Implementation of spike-timing dependent plasticity in the second-order memristor. Non-overlapping pre- and postsynaptic spikes suc-
cessfully lead to STDP results. b) Memristor weight changes as a function of the relative timing between the pre- and postsynaptic non-overlapping 
pulses. Reproduced with permission.[115] Copyright 2015, American Chemical Society.
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a synaptic circuit, and therefore, a neuron circuit block can be 
separate from a synaptic circuit block, rendering it efficient for 
design of a neuromorphic chip. The information in spikes from 
a vast number of neuronal circuits (e.g., neuron addresses and 
spike time labels) is sent through the same data bus by time-
multiplexing the connections. The data are de-multiplexed, and 
each spike is transmitted to a target postsynaptic neuron. The 
synaptic weight for each transmission is listed in a look-up table 
that is temporally stored in a memory block, such as SRAM. 
Thus, each connection is endowed with an appropriate weight 
value for a component in the look-up table (e.g., presynaptic 
neuron address, postsynaptic neuron address).[105,106,125,126] The 
synaptic weight evaluation can be performed with a separate 
synaptic circuit block.

3.4. Advantages of Neuromorphic Computation over von 
Neumann Computation

In an “ideal” neuromorphic system, unlike in a digital com-
puter, no CPU clock exists, which implies asynchronous 
operation of each neuronal circuit only when it is triggered by 
external input, i.e., it is event-driven. Event-driven operation 
offers a significant reduction in power consumption compared 
with the (almost) continuous power consumption of the CPU, 
which is controlled by a clock. Additionally, the neuromorphic 
system can operate at the real-time scale, i.e., neuronal activity 
(spiking frequency) similar to that of a biological neuron 
(<100 Hz), to reduce power consumption. Given that each spike 
costs power, the real-time scale outperforms the “accelerated-
time” scale that implements higher neuronal activities in terms 
of energy consumption, particularly when the system interacts 
with its real physical environment.[127] Additionally, the real-
time scale offers flexibility of system architecture. For instance, 
the aforementioned AER (time-multiplexing) protocol can be 
used effectively because the lower the neuronal activity the 
more neurons that can share a data bus without overloading it 
with the time-multiplexed addresses of the sending neurons. By 
contrast, modern digital computers based on the von Neumann 
architecture obviously differ from the brain with respect to the 
number of sequential data processing steps (>106) and the lim-
ited capability of parallel data processing (number of cores < 20 
for high-end CPUs). Thus, such computers are not fully com-
patible with the brain in terms of architecture.

Additionally, neuromorphic architecture is known to offer 
relatively large tolerance for false operation of units, com-
pared with the von Neumann architecture. This advantage is 
mainly attributed to the redundancy of neurons and their con-
nections; units in false operation are backed up by some of 
redundant units such that no macroscopic false operation is 
caused. Interestingly, in deep learning, some neuron units are 
purposefully halted or removed during a learning process to 
avoid para meter overfitting, which is referred to as dropout.[66] 
However, the degree of false operation tolerance depends on 
the network structure including the number of neurons and 
synapses, task assigned to the network, and algorithm in use. 
Moreover, neuromorphic architecture is much more immune 
to noise (thermal, shot, flicker, and burst noise) unlike the von 

Neumann architecture. Rather, such uncorrelated noise endows 
the neuromorphic architecture with operational uniformity as 
theoretically predicted by Burkitt and Clark[128] and even cre-
ates a new functionality that cannot be achieved in the von 
Neumann architecture.[73] Therefore, the neuromorphic system 
generally can offer more energy-efficient and fault-tolerant 
architecture compared with conventional von Neumann com-
puter for several recognition-oriented tasks.

3.5. Outlook for Memristive Synaptic Devices

Despite recent progresses made in memristive synaptic devices, 
practical implementation of high-density synapse arrays remains 
highly challenging due to many technical problems and the 
low maturity level of this research field. As addressed in Sec-
tion 3.3.3, a standard learning algorithm for memristor-based 
neuromorphic systems is not available; instead, there exist a 
large number of algorithm proposals that were demonstrated in 
small memristor-based networks. Therefore, it is believed that a 
breakthrough in this research field can be made with an optimal 
algorithm that is suitable for memristor-based neuromorphic 
systems. Otherwise, the desired behavior of a single memristor 
largely differs for different approaches so that attention is divided.

An exemplary question is whether the memristive synaptic 
device should represent analog-type conductance or digitized 
conductance for neuromorphic applications. Generally, it is 
believed that the former is desirable because of the two main 
reasons: first, a vast number of neurophysiological studies on 
chemical synapses report an analog-type synaptic weight, albeit 
it is rather noisy; the second reason might stem from DNN. A 
DNN is commonly built using binary neurons and synapses that 
have analog-type weight values. However, regarding the first 
reason, it is widely accepted that the synaptic weight eventually 
bifurcates between the maximum and minimum values.[129–131] 
In other words, the intermediate synaptic weight values might 
be merely temporary, resulting from an initial few spike-pairs. 
Therefore, the analog-type conductance representation may not 
be a necessary condition for the learning process. An objection 
to the second reason is the learning algorithm with a binary 
synapse, where binary values rather than analog-type weight 
values can be adopted in the learning process.[132,133] These fac-
tors mean that a wide range of opportunities exists for memris-
tive synaptic devices for various suitable learning protocols that 
unnecessarily need analog-type conductance.

Irrespective of learning algorithm, an obvious requirement 
that should be carefully considered for the realization of high-
density synapse arrays is low power consumption as repeatedly 
stressed. The rule-of-thumb calculation reveals the following 
approximate power consumption of a single synaptic event 
in the human brain. Among the 1014 synapses in the brain, 
approximately 1% are simultaneously active at a given time.[134] 
Additionally, each neuron produces spikes at a frequency of 
≈10–100 Hz on average, and the total power consumption of 
the brain is approximately 10–20 W. Therefore, the power 
consumption per synaptic event is estimated to be ≈10–11 W.  
Given that each synaptic event has a duration of ≈100 ms, 
each synapse consumes an energy of ≈1 pJ per synaptic event. 
Meeting this energy consumption level using the current 
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memristor technology requires the following operational condi-
tions based on the rule-of-thumb calculation. The energy con-
sumption of a memristor per synaptic event (E) can be calcu-
lated by multiplying the programming pulse amplitude (V) with 
the current through the device (I) and the programming pulse 
width (t) (E = V × I × t). With a programming voltage of ≈2 V 
and a programming time in the range 10–100 ns, the current 
should be in the range 5–50 μA to meet the biologically compa-
rable energy consumption level. This requirement is intended 
merely for a single synaptic event, and the number of events 
per second is proportional to the spiking rate. Therefore, at the 
accelerated time scale, achievement of biologically comparable 
power consumption becomes quite daunting. Moreover, the 
power consumption of spiking neurons should also be consid-
ered, which makes the requirement even more severe.

Additionally, a significant issue that should be urgently 
addressed for high-density passive synaptic arrays is the sneak 
current arising from its parallel connection structure.[26,135,136] 
Such sneak current issue has been significantly dealt with in 
crossbar ReRAMs,[26,135,136] and the same problem applies to syn-
aptic arrays. A promising solution to this problem is the use of a 
passive selector in series with the memristor, which endows the 
chosen bit with high selectivity. Figure 11 shows the representa-
tive neuromorphic system, which was developed recently to emu-
late the cognition of characters z, v, and n using the combined 
CMOS neurons and memristive synaptic crossbar array, where 
the Al2O3/TiO2–x bilayer plays the critical role (see Section 4.1).[137] 
These researchers stated that the uniformity and reliability of the 
synaptic crossbar array enabled such system to work fluently.

4. Improvements in the Materials Aspects

For stateful logic and neuromorphic/analog-type com-
puting applications, diverse memristive materials can be 
used.[85,86,138,139] It is understood that memristive switching in 
oxides is related to the redox reaction process that competes 
between oxidation and reduction of the conducting channel, 

which might easily and successfully emulate several critical 
aspects of the biological systems. More specifically, it is believed 
that the conducting filament (CF) plays an important role in 
most functionalities of the memristor. This section deals with 
material and processing aspects of memristors. In fact, these 
aspects have been extensively studied for ReRAM applications, 
and thus, this section selectively refers to the studies which 
aimed at the neuromorphic applications and the memory appli-
cations that could be used for the new computing applications. 
The three-dimensional integration of the memristors, which 
is of utmost importance for the ReRAM application, is also 
reviewed as it will be a critical ingredient for synaptic applica-
tions. Although the discussion could slightly overlap with the 
previous sections for some aspects, the main focus in this sec-
tion is on the materials and their processing. Extensive reports 
for the neuromorphic application of the memristors were 
already made, but those for the stateful logic were quite rare as 
it has a much shorter history than others, which makes the fol-
lowing discussion meaningful as the stateful logic application 
is similar to that of ReRAM.

The unproven reliability of memristor materials is one of the 
significant concerns about the usefulness of the memristive 
materials for the new computational applications. Nonetheless, 
there are several notable reports about the quite extensive reli-
ability improvement, such as Ta2O5 memristor.

[140,141] It is also 
noted that if the non-volatile logic or stateful logic is realized, 
the number of necessary switching cycles per a device will be 
significantly decreased, which is what the stateful logic is about 
as the energy-saving device. Nevertheless, it cannot be claimed 
that the memristor can show immediate possibility to compete 
with the existing CMOS-based solutions in terms of the mate-
rial reliability at this moment.

4.1. Memristive Materials for New Computing Paradigms

Memristive materials are generally categorized into anion-
migration-based and cation-migration-based resistance 
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Figure 11. a) Integrated 12 × 12 crossbar with an Al2O3/TiO2–x memristor at each cross-point. b) Input pattern set of 3 × 3 binary images used for 
the pattern classification experiment. c) Pattern classification experiment results: Convergence of network outputs during the training process to the 
perfect value (zero). Reproduced with permission.[137] Copyright 2015, Nature Publishing Group.
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as binary transition metal oxides,[115,137,142–148] and multinary 
complex oxides,[149–152] have been extensively studied and can 
be placed into the anion-migration-based memristive materials 
category. Cation-migration-based memristors include an active 
electrode-containing diffusive metal (Ag, Cu, or their alloys) 
with a solid electrolyte, such as chalcogenides,[138,142,145,153–156] 
amorphous silicon[85,142] or other ionic conductors.[143,157–159] 
Despite the prevalence of the ionic resistive switching system 
described above, the electronic resistive switching system can 
also be included in memristive materials.[160,161] In the elec-
tronic switching system, memristive switching phenomena 
rely on carrier (mainly electron) trapping/de-trapping at the 
defective sites. Defective TiO2–x

[160,161] or a bilayer of Ta2O5/
HfO2

[162] could exhibit such bipolar-type electronic switching 
phenomena. Chalcogenide-based phase change materials were 
also investigated in this regard.[89]

In the case of the anion-migration-based memristor, the 
formation of a reduced phase or metallic channel (or metallic 
precipitation) was revealed in several transition metal oxides, 
including TiO2, VO2, WO3, NiO, ZnO, and TaOx.[163–171] The 
Ag or Cu dendrites or precipitations have been observed in a 
solid electrolyte in the case of a cation-migration-based mem-
ristor.[142,172–174] Such conducting phase is the key to main-
taining the resistance state, i.e., the logic states in stateful logic 
circuit and neuronal function of LTP. It is believed that the con-
ducting phase significantly reduces the restoring force, which 
implies the increase of resistance with elapsing time due to 
ionic relaxation or oxidation, back to the high-resistance state. It 
is interesting to note that the formation of a Ca2+ ionic channel 
is crucially involved in LTP in a biological system via release of 
neurotransmitters from a presynaptic neuron.[67]

Molas et al. reported that an Hf dopant in the metal oxide 
electrolyte layer for Cu ion migration could reduce the forma-
tion voltage at the cost of a reduced ON/OFF ratio, whereas a 
small concentration of Al dopant could improve the memory 
window and thermal stability.[175] Similarly, an oxygen vacancy 
could be created in the doped electrolyte layer, leading to easier 
Cu migration while the remaining defects prevent recovery 
of the pristine state during the reset opera-
tion. In addition, chalcogenide (Ag2S),[138,155] 
Ag-doped amorphous Si (a-Si:Ag),[85,142] and 
other electrolyte layers with Ag being dif-
fused by thermal annealing or ultraviolet-
radiation[176,177] have been used as an elec-
trolyte layer to aid the formation of a CF for 
an atomic switch or electrochemical resistive 
memory. Furthermore, Yang et al. recently 
suggested that the evolution of Ag nanoclus-
ters in an electrolyte is determined by the 
local ion supply, the compensating electronic 
charge distribution, and the electric field such 
that complex and adaptive evolution of the 
nanocluster configurations can be expected 
by applying the field and ion supply from 
multiple terminals, as shown in Figure 12.[142]  
Such a multi-terminal system can be used for 
heterosynaptic plasticity to enable the impor-
tant biological functions that correlate more 

than three neurons engaged for the purpose of, e.g., sensory 
perception, associative learning, and prevention of synaptic 
runaway dynamics as well as LTP.[142,154]

For anion-migration-based memristive materials, a hypo-
stoichiometric switching layer has been adapted using reac-
tive sputtering with an oxygen-deficient atmosphere, applying 
an oxygen-reactive electrode without or with post-annealing, 
and alloying with metallic inclusions. A binary oxide Al2O3/
TiO2–x bilayer has been used to demonstrate both neuromor-
phic networks and resistive switching memory.[137,178] Reac-
tive sputtering at low-temperature (<300 °C),[137] atomic layer 
deposition (ALD) and subsequent post-deposition-annealing at 
60 0°C[178] were used to reduce the TiO2 layer and induce an 
oxygen vacancy profile. An oxygen vacancy-abundant Al2O3/
TiO2–x memristive switching layer could exhibit a low formation 
voltage and nonlinear I–V curves, which would allow selector-
free neural networks or vertically integrated self-rectifying 
ReRAM.[137,178] The film deposition method and subsequent 
annealing can modify the film structure and oxygen vacancy 
concentration profile. Song et al. reported that ALD-grown TiO2 
films are weakly crystallized to the anatase phase with ran-
domly oriented tiny crystallites, whereas reactive sputter-grown 
TiO2 film has a columnar grain in a rutile phase, which is struc-
turally similar to a CF composed of Magnéli phases.[179] Such 
concurrent multi-phases might lead to locally disparate mem-
ristive switching behaviors, which are related to the growth 
kinetics of the CF. Ta/Ta2O5, Hf/HfO2, and Ti/HfO2 stacks have 
been widely used as a memristive switching layer and elec-
trode because the reactive metal creates oxygen vacancy in the 
interface.[22,170,180–184]

Recently, metal oxides with dispersed nanoparticles or 
metallic/semiconducting dopants, such as Pt-dispersed SiO2, 
Mn-doped HfO2, Na-doped WO3–x, Si-doped HfO2, and Si-
doped Ta2O5, have been reported as resistive switching mate-
rials.[182,185–190] The switching mechanism has not been fully 
established, but regardless of whether purely electronic 
switching or partly ionic switching is involved,[185,190] such 
materials exhibit promising switching characteristics such as 
low variability and low-power operation. Choi et al. reported 
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Figure 12. a) In the case of a biological synapse, the release of neurotransmitters is caused by 
the arrival of action potentials generated by firing, and a signal is subsequently transmitted as a 
synaptic potential. Reproduced with permission.[138] Copyright 2011, Nature Publishing Group. 
b) SEM image of the device after heterosynaptic facilitation showing a filament connecting the 
presynaptic and postsynaptic terminals, which operates as an LTP. Reproduced with permis-
sion.[142] Scale bar: 100 nm.
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that highly uniform and rapid (≈100 ps) resistive switching 
characteristics were demonstrated in Pt/Pt-dispersed SiO2/Ta 
material for memory applications.[185] Mandal et al. reported a 
novel synaptic memory device made of Mn-doped HfO2 mate-
rial at the 20 nm × 20 nm scale.[187] Compared with the in silico 
VLSI synapse, a nano-device with a Mn-doped HfO2 switching 
layer showed a ≈10 times reduction in area and >106 times 
reduction in power consumption per learning cycle.

For the bipolar-type electronic switching system, the electron-
trapping site plays a crucial role in controlling the stability of 
the resistance state. Kim et al. and Yoon et al. revealed that elec-
tron trapping sites with ≈0.8 eV of trap depth could be created 
in the ruptured region of a CF in the Pt/TiO2/Pt system.[160,161] 
It was believed that such a moderate trap depth could offer 
10-year stability. Fluent charge injection is possible via a rup-
tured CF region due to a lowered Schottky barrier height, a 
decrease in Schottky barrier thickness, or a trap-assisted con-
duction mechanism. However, Lim et al. reported that long-
term stability of synaptic weights was not maintained without 
CF, but initial resistance state was recovered (i.e., short-term 
depression occurred) when different ‘reactive’ metals such as 
Cr, Ni, and Ti rather than inert metals such as Pt and Au were 
used as the top electrodes in the top metal/TiO2/Pt system.[146]

Reports of a new type of memristor with self-rectifying or 
self-limiting memristive switching properties have increased. 
These devices commonly show low current operation with high 
I–V nonlinearity, which are highly desirable for the vertically 
integrated crossbar array architecture designed to increase the 
device density per area. Such behavior is also essential which 
provides each cell with the necessary selectivity for synaptic 
devices. Self-rectifying behavior has been reported from bi-
layered metal oxides, e.g., Pt/TiO2/HfO2/TiN, Pt/TiO2/HfO2/
Ti, Pt/Al2O3/NiO/W, Ti/HfO2/TiOx/Pt, TiN/Al2O3/TiO2/TiN, 
Ta/TaOx/TiO2/Ti, etc.[162,184,191–193,195,197,198,200,201] One of these 
layers plays the role of the switching layer, and the other layer 
rectifies the current injection by forming a Schottky emis-
sion contact or tunnel barrier. In addition to bi-layered oxides, 
hybrid memory and selectors such as HfO2/CuGeS, TiO2/
VO2, and Nb2O5/NbO2 have been reported.[194,196,199] CuGeS is 
known as a mixed ion-electron conductor (MIEC) selector, and 
VO2 and NbO2 are known as insulator-metal-transition (IMT) 
selector materials that deliver superior I–V nonlinearity and 
high current density. Due to the simple stack and absence of an 
individual selector device with a metal electrode, it is believed 
that the self-rectifying memristor is considered the only choice 
for vertical ReRAM. Details on the three-dimensional crossbar 
array of the memristor are provided in the next section.

4.2. Electrodes and Fabrication Issues for the Three-Dimensional 
Crossbar Array

Low energy consumption per operation (spike) is required 
for energy-efficient parallel computing. The lower reliability 
(endurance and uniformity) of memristors compared with 
CMOS circuit can be supplemented by the low power opera-
tion. In addition, the leakage current in the off state should be 
low to minimize standby power. For these reasons, low reset 
current and nonlinear I–V characteristics matter for effectively 

decreasing the power consumption in both active and standby 
modes. Moreover, multiple stacking of CMOS neurons and 
memristor synapses is of great interest in mimicking the multi-
layered human brain. Therefore, implementation of a vertically 
integrated architecture of memristor synapses should be seri-
ously considered.

At the moment, few studies exist on highly integrated 
memristor synapses. Therefore, recent attempts related to the 
three-dimensional stacking of memristors, interconnects, and 
a fabrication method for high-density nonvolatile memory 
are reviewed in this section. A more detailed review of the 
three-dimensional resistive switching crossbar array memory 
from integration to materials can be found in another review 
paper.[5,26]

It is well known that memristors can be integrated two-
dimensionally into crossbar arrays using a simple metal-insu-
lator-metal (MIM) stack. Such crossbar arrays can be further 
stacked in three dimensions to increase density. Figure 13a 
shows the conventional structure of horizontally stacked 3D 
crossbar arrays (H-CBA), which could be the simplest way to 
stack 2D crossbar arrays on top of each other. However, the 
lithographic process and its cost are expected to surge with 
increases in the number of stacks.[26,202]

Alternatively, the MIM junction in a crossbar array can be 
formed in the vertical direction, i.e., the so-called vertically 
stacked 3D crossbar arrays (V-CBA), which can be considered as 
a 90° rotation of H-CBA, as shown in Figure 13b.[26] This type 
of architecture can reduce the large number of lithographic pro-
cesses as well as the fabrication cost. Moreover, the aforemen-
tioned self-rectifying memristors can be implemented in the 
V-CBA architecture, thus avoiding the metallization process in 
the middle for individual selector devices. Otherwise, a selec-
tive etching process for the middle electrode layer is necessary, 
which is generally rather challenging.

If word-lines are replaced by word-planes, as shown in 
Figure 13c, further reduction in the number of lithographic 
processes is expected and of even greater importance is that 
such a “word-plane-type 3D crossbar array” can simplify the 
interconnection between the bit-lines and word-planes con-
nected to the periphery circuits.[5,26,203,204] Although the realiza-
tion of such architecture is highly challenging, with difficulties 
in the design complexity of interconnections and its fabrication 
process, several preliminary works have been recently reported. 
Lee et al. reported the adoption of two graphene word-planes 
and Pt word-planes intervened by a SiO2 layer to demon-
strate word-plane-type V-CBA devices, as shown in Figure 14a  
and b.[204] These researchers stated that 60 stacked layers in a 
3D V-CBA ReRAM were shown to be possible for a lithographic 
half-pitch (F) = 22 nm using Pt as the word-planes, whereas 
200 stacked layers for V-CBA can be achieved in principle by 
repeating a word-plane consisting of 0.3-nm-thick graphene 
and a 6-nm-thick isolation SiO2 layer. The graphene word-plane 
could add additional functionalities to the device operation, e.g., 
a built-in selector that delivers moderate nonlinearity, a thermal 
barrier that confines the heat generated inside, and an oxygen 
diffusion barrier with low activation energy for oxygen migra-
tion.[204–209] Yang et al. reported that graphene/TaOy/Ta2O5-x/
graphene exhibited nonlinear I–V curves (nonlinearity ≈ 280), 
and it was believed that such nonlinearity is likely to originate 
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at the bottom interface during the plasma-
assisted deposition process for the Ta2O5-x 
switching layer.[205]

Because the device feature size is 
decreasing and a longer bit-line or word-
line is needed to meet the requirements of 
memory density, the high resistance of the 
narrow metal lines could be a problem for 
power consumption and latency due to the 
high operation voltage and RC delay time, 
respectively.[210–213] Different voltages along 
a given word- or bit-line at different loca-
tions in the array structure are another crit-
ical problem. If this line resistance exceeds 
a certain critical value, feasible switching of 
the memory cell is hindered.[214] To address 
this issue, one possible approach is 3D 
integration of a memristor connected with 
single-walled carbon nanotubes (SWNTs), 
graphene/reduced graphene oxide (rGO), 
graphene nano-ribbons (GNRs), and topo-
logical insulators (TIs).[207,212,213,215] Low-
dimensional carbon allotropes are free 
from the negative effects suffered by metal 
interconnects, e.g., electro-migration, grain 
boundaries, and edge scattering at highly 
scaled technology nodes.[213] Nevertheless, 
these low-dimensional materials suffer from 
low mobility at elevated temperatures and 
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Figure 14. Structure of graphene-based and Pt-based ReRAM in a vertical 3D cross-point architecture. a) Illustration of graphene-based ReRAM in a 
vertical cross-point architecture. The ReRAM cells are formed at the intersections of the TiN pillar electrode and the graphene plane electrode. The 
resistive switching HfOx layer surrounds the TiN pillar electrode and is also in contact with the graphene plane electrode. b) A schematic cross-section 
of the graphene-based ReRAM. c) High-resolution TEM image of the two-stack V-CBA structure. The ReRAM memory elements are highlighted in red. 
Scale bar = 40 nm. d,e) First and second layer of graphene-based ReRAM with graphene on top of the Al2O3 layer. Scale bars = 5 nm. Reproduced with 
permission.[204] Copyright 2015, Nature Publishing Group.

Figure 13. Standard structures of the cross-line type 3D CBA: a) vertical stacking and b) hori-
zontal stacking of 2D CBA and c) word-plane type CBA.[5,26]
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heat dissipation through thermal interfaces at the contacts in 
addition to their low material quality (defects, rough edges, 
etc.).[213,216] In fact, achieving a resistance (and not resistivity) 
identical to that of metal lines for the given line width from the 
two-dimensional materials is highly challenging due to their 
extremely thin thickness.

For fabrication of the 3D CBA architecture, numerous chal-
lenges appear in manufacturing, process integration, and char-
acterization. It is expected that the higher demands placed on 
the dry etch, film deposition, and planarization processes are 
related to lithography for manufacturing of 3D CBA.[212] Consid-
ering the 3D V-CBA shown in Figure 13, alternating metal and 
insulating layers can be grown to form word-planes via conven-
tional chemical vapor deposition (CVD) of the insulating (SiO2) 
layer and sputtering of the metal layer.[26] Additionally, the sub-
sequent etching process used to form deep holes with a high 
aspect ratio for introducing the bit-lines is highly challenging. 
Multiple etching of the insulating and metal layers should be 
developed with minimal damage to the etched surface because 
it will become the contact interface for the functional mem-
ristor and selector layers. Multiple layers of memristor mate-
rials (usually insulators) and bit-lines (metals) should be grown 
in the deep holes. Considering the dimensions of the deep hole 
(a few tens of nm in diameter and hundreds to thousands of 
nm in depth) and necessity of a highly uniform and conformal 
deposition method, only ALD can satisfy such requirements 
for both the metal and insulating layers. The ALD processes 
for high-k dielectric materials, the contact metal layer, and the 
diffusion barrier for Cu metallization have been used in the 
current semiconductor industry.[5]

It was envisioned that 3D CBA fabrication would be under-
pinned mostly by ALD, which is known as the only feasible 
method for meeting the various stringent requirements for 
3D CBA fabrication. It was indeed the case that many reports 
related to the memristor, selector layer, and 3D CBA included 
processing with ALD. It is especially noted that self-rectifying 
memristors (e.g., Pt/Ta2O5/HfO2−x/Ti),[198] memristive mate-
rials engineering (e.g., TiN/Hf1–xAlxOy/TiN)[217] and multi-
layered tunnel selectors (e.g., Pt/TaN1+x/Ta2O5/TaN1+x/Pt)[218] 
could be prepared using consecutive or multi-component ALD 
processes. The scaling limits of the area (≈10 nm × 10 nm) and 
thickness (≈2 nm) of the memristive layer were also verified by 
the ALD-grown HfO2 switching layer.[159,219] Park et al. worked 
on the electrical characterizations of electro-forming and resis-
tive switching in 0.8-, 1.3-, 1.8-, and 2.3-nm-thick ALD-grown 
Ta2O5 switching layers formed on a 28-nm-diameter contact 
plug.[220,221] It was notable that a Ta2O5 switching layer as thin 
as 0.8 nm showed fluent resistance switching performance, 
thus demonstrating the extreme scalability of the material.

5. Concluding Remarks

The tremendous growth in information technology that 
humans have enjoyed over the past several decades is expected 
to face severe challenges within the next few decades simply 
because of unsustainable energy consumption, which will be 
over ≈100 times greater than all of the usable energy in 2040 
combined with the current trend. Decreasing the energy per 

unit operation is certainly an option, but this approach might 
not be feasible due to the involvement of thermal noise at 
room temperature. Therefore, the most feasible approach is 
to decrease the number of (binary) operations itself. Although 
the digital computation methodology based on von Neumann 
architecture has been extensively developed and optimized 
and will still remain as the appropriate method for determin-
istic computational tasks, many other computationally more 
demanding tasks require more optimum architecture than 
that of the von Neumann. As the human-machine-interface 
becomes more intimate, such tasks that often require certain 
decision steps under the given circumstances will become 
even more important in the future. The recent successes of the 
“deep learning” algorithm in finding the “optimal” solution for 
a given information set, although it might not be the “correct” 
solution, is representative of such trends, i.e., mimicking of the 
human brain. Nevertheless, the deep learning algorithm is still 
a software-based solution that uses Si-based devices. Therefore, 
this approach might not be the correct answer to the aforemen-
tioned energy crisis in computation. A seminal match occurred 
in March 2016 between Google’s alpha-Go machine and Sedol 
Lee, who has been the Go game world champion for 10 years, 
with victory at the hand of the machine and the score of 4:1. 
However, human is definitely the winner in terms of the energy 
consumption (≈200 KW for alpha-Go vs. ≈20 W for Sedol Lee).

In this long review, the authors have attempted to pro-
vide deeper views on newly emerging computing paradigms, 
including stateful logic and neuromorphic computing. Because 
the data volatility in current computers is a large source of 
energy consumption, stateful logic is an attractive option for a 
more energy-efficient device that still lies within the von Neu-
mann architecture. However, “stateful” logic poses significant 
challenges because the output of certain logic operation (gate) 
is retained within the devices, and thus a separate readout step 
is required, which not only complicates the operation but also 
poses a risk of higher overall energy consumption. Therefore, the 
most feasible configuration of such stateful logic is a combina-
tion with current CMOS logic circuits, more preferably in three-
dimensional form. This arrangement must be suitable for deter-
ministic computation. Material implication logic realized by the 
memristor is a strong contender for such a device configuration.

For other computational areas, i.e., human-like tasks, a cog-
nitive/neuromorphic computing architecture will be necessary, 
which is the most probable case if no well-defined “correct” 
answer exists under a given circumstance. An automatic car-
driving algorithm could be a good example for such scenario. 
In this case, the hardware must contain neurons and synapses 
rather than CPUs and memories. The in silico approach was 
a first step, as demonstrated by IBM’s True North chip, but 
eventually, a genuine hardware approach must be pursued, i.e., 
materials and devices that mimic biological neurons and syn-
apses. To this end, the memristor appears to offer great pos-
sibility albeit there are still significant concerns about its reli-
ability. At the same time, a defect-tolerant architecture similar 
to the brain must be developed. Great improvements have been 
reported in this direction during past decade in terms of mate-
rial processing, understanding of properties, and device fabrica-
tion. A subset of the most significant improvements is included 
in this review but other points could be missing.
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in the understanding of the human brain during the past dec-
ades, which means that designers, architects, and process engi-
neers working on computers and semiconductor chips have 
dared to mimic the brain with various hardware and software 
approaches. Memristors are expected to play a critical role in this 
challenging area, both with conventional and new computing 
architectures. This trend will be strengthened when the roles of 
the chaotic processes in the brain are better understood and the 
extreme dynamics of memristors near the chaotic edge can be 
correlated with such neuronal behaviors. Nevertheless, the fun-
damental question of the ultimate performance of a computing 
machine that mimics the brain functionality will remain unan-
swered for a long time because the question of the origin of 
“intelligence” and “consciousness” is not yet clearly answered; is 
it a consequence of types of “physical” operations that occur in 
so many computing elements (neurons and synapses) and thus 
is a computable entity, or a consequence of something unknown 
that is not yet captured? With respect to this question, the  
480-page monograph written by R. Penrose, titled “Shadows of 
the Mind”, offers the community insightful viewpoints.[222]
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